Tubulin polyglutamylation is essential for maintaining cilium stability and function, and defective tubulin polyglutamylation is associated with ciliopathies. However, the regulatory mechanism underlying proper axonemal polyglutamylation remains unclear. He et al. (https://doi.org/10.1083/jcb.202405170) discovered that Cdk7/Cdk6/FIP5 phosphorylation cascade controls the ciliary import of tubulin glutamylases, thereby modulating axoneme polyglutamylation and ciliary signaling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1083/jcb.202412034 | DOI Listing |
J Cell Biol
February 2025
Department of Molecular and Cell Biology, University of California, Merced, Merced, CA, USA.
Tubulin polyglutamylation is essential for maintaining cilium stability and function, and defective tubulin polyglutamylation is associated with ciliopathies. However, the regulatory mechanism underlying proper axonemal polyglutamylation remains unclear. He et al.
View Article and Find Full Text PDFJ Cell Biol
February 2025
Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
Tubulin polyglutamylation is a posttranslational modification that occurs primarily along the axoneme of cilia. Defective axoneme polyglutamylation impairs cilia function and has been correlated with ciliopathies, including Joubert Syndrome (JBTS). However, the precise mechanisms regulating proper axoneme polyglutamylation remain vague.
View Article and Find Full Text PDFEMBO J
January 2025
Sorbonne Université, INSERM U1130, CNRS UMR8246, Neuroscience Paris Seine - Institut de Biologie Paris-Seine (NPS-IBPS), Paris, France.
The microtubule cytoskeleton is a major driving force of neuronal circuit development. Fine-tuned remodelling of this network by selective activation of microtubule-regulating proteins, including microtubule-severing enzymes, has emerged as a central process in neuronal wiring. Tubulin posttranslational modifications control both microtubule properties and the activities of their interacting proteins.
View Article and Find Full Text PDFEMBO J
December 2024
Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland.
Microtubules, composed of conserved α/β-tubulin dimers, undergo complex post-translational modifications (PTMs) that fine-tune their properties and interactions with other proteins. Cilia exhibit several tubulin PTMs, such as polyglutamylation, polyglycylation, detyrosination, and acetylation, with functions that are not fully understood. Mutations in AGBL5, which encodes the deglutamylating enzyme CCP5, have been linked to retinitis pigmentosa, suggesting that altered polyglutamylation may cause photoreceptor cell degeneration, though the underlying mechanisms are unclear.
View Article and Find Full Text PDFFront Neurosci
October 2024
Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.
Introduction: In the developing brain, neurons extend an axonal process through a complex and changing environment to form synaptic connections with the correct targets in response to extracellular cues. Microtubule and actin filaments provide mechanical support and drive axon growth in the correct direction. The axonal cytoskeleton responds to extracellular guidance cues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!