Attachment of three different heterocycles with electron donor or acceptor character to a central 1,3,5-triazine core generates readily soluble side-chain free dyes with two displaying soft crystalline mesomorphism and one displaying a nematic liquid crystal phase as confirmed by polarized optical microscopy, calorimetry, gravimetric analysis, and powder X-ray diffraction. Equally intriguing is the dyes' relatively strong electronic communication between donor and acceptor subchromophores that are meta-conjugated to one another, which is experimentally observed as a broad intramolecular charge-transfer absorption that can extend over 100 nm past the most intense absorption event and is computationally confirmed through density functional theory (DFT) evaluations of the molecular ground- and excited-state properties. This molecular design permits the preparation of dyes with panchromatic absorption not just based on the additive absorption of individual subchromophores.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.202403860 | DOI Listing |
Chemistry
January 2025
University of Windsor Faculty of Science, Chemistry & Biochemsitry, 401 Sunset Avenue, N9B 3P4, Windsor, CANADA.
Attachment of three different heterocycles with electron donor or acceptor character to a central 1,3,5-triazine core generates readily soluble side-chain free dyes with two displaying soft crystalline mesomorphism and one displaying a nematic liquid crystal phase as confirmed by polarized optical microscopy, calorimetry, gravimetric analysis, and powder X-ray diffraction. Equally intriguing is the dyes' relatively strong electronic communication between donor and acceptor subchromophores that are meta-conjugated to one another, which is experimentally observed as a broad intramolecular charge-transfer absorption that can extend over 100 nm past the most intense absorption event and is computationally confirmed through density functional theory (DFT) evaluations of the molecular ground- and excited-state properties. This molecular design permits the preparation of dyes with panchromatic absorption not just based on the additive absorption of individual subchromophores.
View Article and Find Full Text PDFOrg Lett
January 2025
DFG Cluster of Excellence livMatS @FIT, Institute of Organic Chemistry, Albertstraße 21, 79104 Freiburg (Breisgau), Germany.
facile access to -heteroaryl-fused bis-BODIPY scaffolds has been developed. A BODIPY dimer with an α,α-amine linker serves as a starting material to obtain pyrrole- and pyridine-fused BODIPYs, either by direct oxidation or by oxidative condensation with an aldehyde building block. Both species mark antipodal conjugative coupling conditions that result in distinct spectral outcomes.
View Article and Find Full Text PDFChemistry
December 2024
Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan.
We report the physical properties of a new class of triarylmethyl-based carbocations containing both an electron-donating diphenyl ether moiety and an electron-accepting carbonyl group with a helical plane framework. Their unique packing patterns were clarified by X-ray crystallographic analysis, which depend on the counter anions to influence their photophysical properties in the solid states. Notably, the interactions between π-cation species and planar anion species lead to a unique panchromatic property, accompanying a near-infrared absorption with a λ value of 1030 nm, which can be assigned to intermolecular charge transfer transition.
View Article and Find Full Text PDFOrg Biomol Chem
October 2024
Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Chair of Organic Chemistry II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany.
The π-extension of porphyrins with pyrenes through the β--fusion of five-membered rings is demonstrated. Three architectures resulting from combining up to two porphyrins and pyrenes were obtained straightforwardly in good overall yields. Although significantly planarized, the molecules retain excellent solubility and processability.
View Article and Find Full Text PDFChemistry
December 2024
Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Chair of Organic Chemistry II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany.
A library of novel π-extended porphyrin-hexabenzocoronene (HBC) architectures is presented. Two distinct synthetic pathways were utilized to obtain either phenyl- or HBC-fused compounds. Absorption experiments reveal the species' exciting photophysical and optoelectronic properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!