There is increasing pressure for researchers to reduce their reliance on animals, particularly in early-stage research. The main reason for that change arises from the different biological behavior of humans that leads to frequent failure of translating data from bench to bed. The advent of organoid technology ten years ago, along with the feasibility of obtaining brain organoids in most laboratories, has created considerable expectations not exempting frustration. In this review, we make a critical appraisal of the advantages and limitations of studying Alzheimer's disease in brain cortical organoids derived from inducible pluripotent stem cells (iPSCs). While dealing with human neurons and glia in 3D poses a tremendous advantage versus murine brain cells, organoids typically lack microglia, blood vessels, immune interactions as well as proper CNS neuropil. In turn, they have relatively few oligodendrocytes and low myelination. In addition, lengthy procedures to get proper mature organoids constitute an additional limitation that may also affect the native biological properties of neurons and glia. We conclude that human brain organoids, while popular and useful, remain a model that needs further refinement before bringing substantial value to study Alzheimer's disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.14336/AD.2024.1409 | DOI Listing |
Aging Dis
January 2025
Achucarro Basque Center for Neuroscience, University of the Basque Country, CIBERNED and Biobizkaia, 48940-Leioa, Spain.
There is increasing pressure for researchers to reduce their reliance on animals, particularly in early-stage research. The main reason for that change arises from the different biological behavior of humans that leads to frequent failure of translating data from bench to bed. The advent of organoid technology ten years ago, along with the feasibility of obtaining brain organoids in most laboratories, has created considerable expectations not exempting frustration.
View Article and Find Full Text PDFHeliyon
January 2025
Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland.
Recent advancements in engineering Complex models (CIVMs) such as Blood-brain barrier (BBB) organoids offer promising platforms for preclinical drug testing. However, their application in drug development, and especially for the regulatory purposes of toxicity assessment, requires robust and reproducible techniques. Here, we developed an adapted set of orthogonal image-based tissue methods including hematoxylin and eosin staining (HE), immunohistochemistry (IHC), multiplex immunofluorescence (mIF), and Matrix Assisted Laser Desorption/Ionization Mass Spectrometry Imaging (MALDI-MSI) to validate CIVMs for drug toxicity assessments.
View Article and Find Full Text PDFJ Undergrad Neurosci Educ
December 2024
Berman Institute of Bioethics, Johns Hopkins University, Baltimore, MD 21205; Center for Teaching Excellence and Innovation, Johns Hopkins University, Baltimore, MD 21205.
Students are thinking about ethical, moral, and societal implications of science-as individuals and communities- regardless of whether these topics are part of formal curricula. Ethical questions can arise from broad neuroscientific questions (What is consciousness?), emerging topics (e.g.
View Article and Find Full Text PDFCurr Opin Biotechnol
January 2025
Institute of Synthetic Biology, Heinrich-Heine University Düsseldorf, Düsseldorf 40225, Germany. Electronic address:
Cerebral organoids pioneered in replicating complex brain tissue architectures in vitro, offering a vast potential for human disease modeling. They enable the in vitro study of human physiological and pathophysiological mechanisms of various neurological diseases and disorders. The trajectory of technological advancements in brain organoid generation and engineering over the past decade indicates that the technology might, in the future, mature into indispensable solutions at the horizon of personalized and regenerative medicine.
View Article and Find Full Text PDFExp Neurobiol
December 2024
Dementia Brain Bank, Seoul National University Hospital, Seoul 03080, Korea.
This paper introduces the current status of Seoul National University Hospital Dementia Brain Bank (SNUH-DBB), focusing on the concordance rate between clinical diagnoses and postmortem neuropathological diagnoses. We detail SNUH-DBB operations, including protocols for specimen handling, induced pluripotent stem cells (iPSC) and cerebral organoids establishment from postmortem dural fibroblasts, and adult neural progenitor cell cultures. We assessed clinical-neuropathological diagnostic concordance rate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!