A photoswitchable [2]catenane receptor.

Chem Commun (Camb)

Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.

Published: January 2025

Similar Publications

A photoswitchable [2]catenane receptor.

Chem Commun (Camb)

January 2025

Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.

A [2]catenane-based receptor functionalized with stiff-stilbene can be reversibly switched with 340/385 nm light between its - and -isomers, which leads to a considerable change in chloride binding affinity. Photoisomerization in the presence of chloride allows for on demand guest uptake and release.

View Article and Find Full Text PDF

Photoswitchable Topological Regulation of Covalent Macrocycles, Molecular Recognition, and Interlocked Structures.

Angew Chem Int Ed Engl

December 2024

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.

Macrocycles represent one important class of functional molecules, and dynamic macrocycles with the potential of cleavability, adaptability, and topological conversion are challenging. Herein we report photoswitchable allosteric and topological control of dynamic covalent macrocycles and further the use in guest binding and mechanically interlocked molecules. The manipulation of competing ring-chain equilibria and bond formation/scission within reaction systems enabled light-induced structural regulation over dithioacetal and thioacetal dynamic bonds, accordingly realizing bidirectional switching between crown ether-like covalent macrocycles and their linear counterparts.

View Article and Find Full Text PDF

Design, assembly, characterization, and operation of double-stranded interlocked DNA nanostructures.

Nat Protoc

October 2019

Chemical Biology and Medicinal Chemistry Unit, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.

Mechanically interlocked DNA nanostructures are useful as flexible entities for operating DNA-based nanomachines. Interlocked structures made of double-stranded (ds) DNA components can be constructed by irreversibly threading them through one another to mechanically link them. The interlocked components thus remain bound to one another while still permitting large-amplitude motion about the mechanical bond.

View Article and Find Full Text PDF

Construction of photoswitchable rotaxanes and catenanes containing dithienylethene fragments.

Org Biomol Chem

July 2015

Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China.

Mechanically interlocked structures such as rotaxanes and catenanes provide a novel backbone for constructing functional materials with unique structural characteristics. In this study, we have designed and synthesized a series of photoswitchable rotaxanes and catenanes containing photochromic dithienylethene fragments using a template-directed clipping approach based on dynamic imine chemistry. Their structures have been confirmed using NMR, mass spectrometry and elemental analysis.

View Article and Find Full Text PDF

Photo-responsive [2]catenanes: synthesis and properties.

Org Biomol Chem

October 2014

Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China.

A series of novel dithienylethene-based macrocycles containing ammonium moieties has been synthesized. They have been employed as templates to construct [2]catenanes showing their photoisomerization properties by means of a dynamic covalent chemistry approach. Their structures have been reliably confirmed by NMR, ESI-MS or MALDI-QTOF-MS, and elemental analysis, and their energy-minimized structures of open- and closed-ring isomers were investigated by the theoretical calculation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!