Collision integrals within the Chapman-Enskog theory for a generalized Lennard-Jones potential.

J Chem Phys

Advanced Computing, Mathematics and Data Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, MS J7-10, Richland, Washington 99352, USA.

Published: January 2025

We report the values of the collision integrals, needed for the calculation of the macroscopic transport properties such as viscosity (η) and diffusion coefficient (D) of gases within the Chapman-Enskog kinetic gas theory, for a generalized Lennard-Jones potential (gLJ), a more general potential with an adjustable long range 1/r dependence that can describe a wide range of intermolecular interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0244532DOI Listing

Publication Analysis

Top Keywords

collision integrals
8
theory generalized
8
generalized lennard-jones
8
lennard-jones potential
8
integrals chapman-enskog
4
chapman-enskog theory
4
potential report
4
report values
4
values collision
4
integrals needed
4

Similar Publications

Resonances in Low-Energy Electron Collisions with Salicylic Acid.

J Phys Chem A

January 2025

Departamento de Física, Universidade Federal do Paraná, Caixa Postal 19044, 81531-980 Curitiba, Paraná, Brazil.

In this work, we report elastic integral, differential, and momentum-transfer cross sections for the scattering of low-energy electrons by salicylic acid. The cross sections were calculated with the Schwinger multichannel method implemented with norm-conserving pseudopotential within the static-exchange and static-exchange plus polarization (SEP) approximations for energies up to 15 eV. In the SEP approximation, four π* resonances were found at around 0.

View Article and Find Full Text PDF

A measurement of the dijet production cross section is reported based on proton-proton collision data collected in 2016 at by the CMS experiment at the CERN LHC, corresponding to an integrated luminosity of up to 36.3 . Jets are reconstructed with the anti- algorithm for distance parameters of and 0.

View Article and Find Full Text PDF

In order to address the issue of tracking errors of collision Caenorhabditis elegans, this research proposes an improved particle filter tracking method integrated with cultural algorithm. The particle filter algorithm is enhanced through the integration of the sine cosine algorithm, thereby facilitating uninterrupted tracking of the target C. elegans.

View Article and Find Full Text PDF

A Fuzzy Control Strategy for Multi-Goal Autonomous Robot Navigation.

Sensors (Basel)

January 2025

Department of Product & Systems Design Engineering, University of the Aegean, 84100 Syros, Greece.

This paper addresses the complex problem of multi-goal robot navigation, framed as an NP-hard traveling salesman problem (TSP), in environments with both static and dynamic obstacles. The proposed approach integrates a novel path planning algorithm based on the Bump-Surface concept to optimize the shortest collision-free path among static obstacles, while a Genetic Algorithm (GA) is employed to determine the optimal sequence of goal points. To manage static or dynamic obstacles, two fuzzy controllers are developed: one for real-time path tracking and another for dynamic obstacle avoidance.

View Article and Find Full Text PDF

Modularly organizing active micromachines into high-grade metamachines makes a great leap for operating the microscopic world in a biomimetic way. However, modulating the nonreciprocal interactions among different colloidal motors through chemical reactions to achieve the controllable construction of active colloidal metamachines with specific dynamic properties remains challenging. Here, we report the phototactic active colloidal metamachines constructed by shape-directed dynamic self-assembly of chemically driven peanut-shaped TiO colloidal motors and Janus spherical Pt/SiO colloidal motors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!