Tree responses to drought are well studied, but the interacting effects of drought timing on growth, water use, and stress legacy are less understood. We investigated how a widespread conifer, Scots pine, responded to hot droughts early or late in the growing season, or to both. We measured sap flux, stem growth, needle elongation, and leaf water potential (Ψ) to assess the impacts of stress timing on drought resilience in Scots pine saplings. The early summer hot drought had peak temperatures of 36.5 °C, while the late summer hot drought peaked at 38.2 °C. Soil water content during both periods declined to ca. 50% of control values. The early-season hot drought caused growth cessation already at Ψ - 1.1 MPa, visible as an almost 30 days earlier end to needle elongation, resulting in needles 2.7 cm shorter, on average. This reduction in leaf area decreased productivity, resulting in a reduction of 50% in seasonal transpiration. However, the reduced water use of early-stressed saplings appeared to enhance resistance to a late-season drought, as reflected in a smaller decline in Ψ and lower tree water deficit compared to saplings that did not experience early-season stress. In summary, we observed persistant drought legacy effects from early-season hot-drought stress, as evident in a 35% reduction of leaf area, which impacted tree water use, stress resistance, and productivity. These structural adjustments of leaf development and reduced bud mass from early-season stress could be critical in evergreen conifers, whose long-lived foliage influences future water use and growth potential.

Download full-text PDF

Source
http://dx.doi.org/10.1111/plb.13760DOI Listing

Publication Analysis

Top Keywords

hot drought
16
tree water
12
scots pine
12
drought
9
early-season hot
8
growth cessation
8
water
8
water stress
8
needle elongation
8
summer hot
8

Similar Publications

Tree responses to drought are well studied, but the interacting effects of drought timing on growth, water use, and stress legacy are less understood. We investigated how a widespread conifer, Scots pine, responded to hot droughts early or late in the growing season, or to both. We measured sap flux, stem growth, needle elongation, and leaf water potential (Ψ) to assess the impacts of stress timing on drought resilience in Scots pine saplings.

View Article and Find Full Text PDF

Future increase in compound soil drought-heat extremes exacerbated by vegetation greening.

Nat Commun

December 2024

Institute of Carbon Neutrality, Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China.

Compound soil drought and heat extremes are expected to occur more frequently with global warming, causing wide-ranging socio-ecological repercussions. Vegetation modulates air temperature and soil moisture through biophysical processes, thereby influencing the occurrence of such extremes. Global vegetation cover is broadly expected to increase under climate change, but it remains unclear whether vegetation greening will alleviate or aggravate future increases in compound soil drought-heat events.

View Article and Find Full Text PDF

Evolutionary analysis of CBFs/DREB1s in temperate and tropical woody bamboos and functional study of PeDREB1A3 under cold and drought stress.

Plant Physiol Biochem

December 2024

State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 310000, China; Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, 310000, China. Electronic address:

Bamboo forests are vulnerable to extreme cold, as well as drought caused by declining rainfall or persistent hot, under global climate change. The C-repeat binding factors/dehydration-responsive element binding protein 1s (CBFs/DREB1s) are vital to acquiring tolerance to deal with the changing climate in plants. Herein, we investigated the evolution of CBFs/DREB1s in four temperate or tropical woody bamboos.

View Article and Find Full Text PDF

Difference in summer heatwave-induced damage between desert native and urban greening plants in an arid desert region.

PLoS One

December 2024

Department of Geography & Spatial Information/Center for Land and Marine Spatial Utilization and Governance Research, Ningbo University, Ningbo, China.

Summer heatwaves have caused a distinct mortality between urban greening and native plants. However, there are insufficient studies revealing the underlying mechanisms. We hypothesized that differentiation in hydraulic traits and their integration cause the varied heatwave-induced damages between the two plant types.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the anthocyanin synthase (ANS) gene, crucial for fruit color development, particularly in the 'Lingwuchangzao' jujube variety under stress from high temperatures and drought.
  • Researchers identified 107 ZjANS genes, mostly found in the cytosol and nucleus, and discovered their evolutionary conservation and distribution across 12 chromosomes.
  • Thirteen ZjANS genes were shown to positively affect fruit coloring in stressed conditions, with ZjANS17 highlighted as especially important, laying the groundwork for future studies and jujube breeding.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!