Nonplanar (butterfly-shaped) phenothiazine () and its derivative's () photophysical and spectral properties have been tuned by varying the solvents and their polarity and investigated employing spectroscopic techniques such as UV-Vis, steady-state and time-resolved fluorescence, and TDDFT calculations. The UV-Vis absorption studies and TDDFT calculations reveal two distinct bands for both compounds: a strong π-π* transition at shorter wavelengths and a weaker -π* transition, which displays a little bathochromic shift in polar solvents. The detailed emission studies reveal that such dual emission is a result of the photoinduced excited-state conjugation enhancement (ESCE) process. The band at a shorter wavelength corresponds to the locally excited (LE) state, while the longer wavelength band arises from the planarized excited state resulting from ESCE. With the increase in solvent polarity, the LE band is less affected, whereas strong positive solvatochromism is observed for the ESCE band. As the solvent polarity increases, the ESCE band demonstrates significant positive solvatochromism, while emission intensity decreases with higher solvent polarity, suggesting stabilization of the excited state. The biexponential decay of fluorescence lifetimes further corroborates the dual emission behavior of and . exhibits a higher photoluminescence quantum yield (PLQY) than that observed for , and the solvent viscosity influences the PLQY, indicating that nonradiative decay is activated during the planarization of the excited state, also known as excited-state conjugation enhancement. Furthermore, the (time-dependent) density functional theory (TD) DFT calculations performed to understand the geometrical parameters and the electronic transitions of these model molecules further corroborate experimental findings. These findings underscore the significant influence of solvent polarity and molecular structure on the dual emission and excited-state dynamics of and , which eventually hold substantial implications for advanced photophysical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.4c06300 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!