Effect of Fibrates on Lipoprotein-associated Phospholipase A2 Mass and Activity: A Systematic Review and Meta-analysis of Controlled Clinical Trials.

Curr Pharm Des

Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.

Published: January 2025

Background: In vascular tissue, macrophages and inflammatory cells produce the enzyme lipoprotein- associated phospholipase A2 (Lp-PLA2). Treatment with fibrates decreases Lp-PLA2 levels in individuals with obesity and metabolic syndrome; however, these findings have not been fully clarified.

Objective: The goal of this study was to investigate the possible effects of fibrate therapy on Lp-PLA2 mass and activity through a meta-analysis of clinical trials.

Methods: Web of Science, PubMed, Scopus, Google Scholar, and ClinicalTrials.gov databases were searched using MeSH terms and keywords. Randomized controlled trials (RCT) evaluating the effect of statins on Lp- PLA2 mass and/or activity were included in the meta-analysis. Quantitative data were analyzed using a random- effects model and the generic inverse variance method.

Results: The meta-analysis of 10 clinical trials indicated that fibrate treatment has no significant effect on Lp- PLA2 mass (fibrate vs. placebo/nothing = WMD: -3.29 ng/ml, 95% CI: -21.35, 14.78, p = 0.72; fibrate vs. active control = WMD: -1.08 ng/ml, 95% CI: -51.38, 49.22, p = 0.97); Lp-PLA2 activity (fibrate vs. active control = WMD: 0.84 nmol/ml/min, 95% CI: -0.17, 1.84, p = 0.10); HDL-LpPLA2 activity (fibrate vs. active control = WMD: 0.77 nmol/ml/min, 95% CI: -0.33, 1.88, p = 0.17); and secretory PLA2 (fibrate vs. active control = WMD: 0.37 ng/ml, 95% CI: -1.22, 1.97, p = 0.65). Also, the results of the sensitivity analysis were robust for all these parameters.

Conclusion: In conclusion, fibrate therapy did not reduce the mass and activity of Lp-PLA2.

Download full-text PDF

Source
http://dx.doi.org/10.2174/0113816128345231240925095400DOI Listing

Publication Analysis

Top Keywords

fibrate active
16
active control
16
control wmd
16
mass activity
12
ng/ml 95%
12
clinical trials
8
fibrate
8
fibrate therapy
8
meta-analysis clinical
8
lp- pla2
8

Similar Publications

Background: In vascular tissue, macrophages and inflammatory cells produce the enzyme lipoprotein- associated phospholipase A2 (Lp-PLA2). Treatment with fibrates decreases Lp-PLA2 levels in individuals with obesity and metabolic syndrome; however, these findings have not been fully clarified.

Objective: The goal of this study was to investigate the possible effects of fibrate therapy on Lp-PLA2 mass and activity through a meta-analysis of clinical trials.

View Article and Find Full Text PDF

Pemafibrate Induces a Low Level of PPARα Agonist-Stimulated mRNA Expression of ANGPTL4 in ARPE19 Cell.

Bioengineering (Basel)

December 2024

Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan.

To elucidate the unidentified roles of a selective peroxisome proliferator-activated receptor α (PPARα) agonist, pemafibrate (Pema), on the pathogenesis of retinal ischemic diseases (RID)s, the pharmacological effects of Pema on the retinal pigment epithelium (RPE), which is involved in the pathogenesis of RID, were compared with the pharmacological effects of the non-fibrate PPARα agonist GW7647 (GW). For this purpose, the human RPE cell line ARPE19 that was untreated (NT) or treated with Pema or GW was subjected to Seahorse cellular metabolic analysis and RNA sequencing analysis. Real-time cellular metabolic function analysis revealed that pharmacological effects of the PPARα agonist actions on essential metabolic functions in RPE cells were substantially different between Pema-treated cells and GW-treated cells.

View Article and Find Full Text PDF

Background: Neuroinflammatory responses are strongly associated with the pathogenesis of progressive neurodegenerative conditions and mood disorders. Modulating microglial activation is a potential strategy for developing protective treatments for central nervous system (CNS)-related diseases. Fibrates, widely used in clinical practice as cholesterol-lowering medications, exhibit numerous biological activities, such as anticancer and antiinflammatory activities.

View Article and Find Full Text PDF

The solubility of commonly used anti-inflammatory drugs has become a significant concern in contemporary medicine. Furthermore, inflammatory arthritis stands out as the most prevalent chronic inflammatory disease globally. The disease's pathology is characterized by heightened inflammation and oxidative stress, culminating in chronic pain and the loss of joint functionality.

View Article and Find Full Text PDF

Background & Aims: Approximately 40% of patients with Primary Biliary Cholangitis (PBC) show incomplete response to ursodeoxycholic acid, thus needing second-line treatment to prevent disease progression. As no head-to-head comparison study is available, we used a network meta-analysis (NMA) to compare efficacy and safety of available second-line therapies.

Methods: We performed a systematic literature review including randomised, placebo-controlled trials of patients with PBC and incomplete response, or intolerance, to ursodeoxycholic acid, and compared relative risks (RRs) for primary (biochemical response at 52-week) and secondary outcomes [incidence of new-onset pruritus and serious adverse events (SAEs)].

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!