Rhabdomyosarcoma (RMS) is a family of phenotypically myogenic paediatric cancers consisting of two major subtypes: fusion-positive (FP) RMS, most commonly involving the PAX3::FOXO1 fusion gene, formed by the fusion of paired box 3 (PAX3) and forkhead box O1 (FOXO1) genes, and fusion-negative (FN) RMS, lacking these gene fusions. In humans, DNA methylation patterns distinguish these two subtypes as well as mutation-associated subsets within these subtypes. To investigate the biological factors responsible for these methylation differences, we profiled DNA methylation in RMS tumours derived from genetically engineered mouse models (GEMMs) in which various driver mutations were introduced into different myogenic lineages. Our unsupervised analyses of DNA methylation patterns in these GEMM tumours yielded two major clusters, corresponding to high and no/low expression of Pax3::Foxo1, which mirrored the results for human FP and FN RMS tumours. Two distinct methylation-defined subsets were found for GEMM RMS tumours with no/low Pax3::Foxo1 expression: one subset enriched in Pax7 lineage tumours and a second subset enriched in myogenic factor 5 (Myf5) lineage tumours. Integrative analysis of DNA methylation and transcriptomic data in mouse and human RMS revealed a common group of differentially methylated and differentially expressed genes, highlighting a conserved set of genes functioning in both human RMS models and GEMMs of RMS. In conclusion, these studies provide insight into the roles of oncogenic fusion proteins and developmental lineages in establishing DNA methylation patterns in FP and FN RMS respectively. © 2025 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/path.6386 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!