Aerosol CVD Carbon Nanotube Thin Films: From Synthesis to Advanced Applications: A Comprehensive Review.

Adv Mater

Department of Nano Engineering, Department of Nano Science and Technology, Sungkyunkwan University Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Seobu-ro 2066, Jangan-gu, Suwon, 16419, Republic of Korea.

Published: January 2025

Carbon nanotubes (CNTs) produced by the floating-catalyst chemical vapor deposition (FCCVD) method are among the most promising nanomaterials of today, attracting interest from both academic and industrial sectors. These CNTs exhibit exceptional electrical conductivity, optical properties, and mechanical resilience due to their binder-free and low-defect structure, while the FCCVD method enables their continuous and scalable synthesis. Among the methodological FCCVD variations, aerosol CVD' is distinguished by its production of freestanding thin films comprising macroscale CNT networks, which exhibit superior performance and practical applicability. This review elucidates the complex interrelations between aerosol CVD reactor synthesis conditions and the resulting properties of the CNTs. A unified approach connecting all stages of the synthesis process is proposed as a comprehensive guide. This review examines the correlations between CNT structural parameters (length and diameter) and resultant film properties (conductivity, optical, and mechanical characteristics) to establish a comprehensive framework for optimizing CNT thin film synthesis. The analysis encompasses characterization methodologies specific to aerosol CVD-synthesized CNTs and evaluates how their properties influence applications across diverse domains, from energy devices to optoelectronics. The review concludes by addressing current challenges and prospects in this field.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202413777DOI Listing

Publication Analysis

Top Keywords

aerosol cvd
8
thin films
8
fccvd method
8
conductivity optical
8
synthesis
5
aerosol
4
cvd carbon
4
carbon nanotube
4
nanotube thin
4
films synthesis
4

Similar Publications

Aerosol CVD Carbon Nanotube Thin Films: From Synthesis to Advanced Applications: A Comprehensive Review.

Adv Mater

January 2025

Department of Nano Engineering, Department of Nano Science and Technology, Sungkyunkwan University Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Seobu-ro 2066, Jangan-gu, Suwon, 16419, Republic of Korea.

Carbon nanotubes (CNTs) produced by the floating-catalyst chemical vapor deposition (FCCVD) method are among the most promising nanomaterials of today, attracting interest from both academic and industrial sectors. These CNTs exhibit exceptional electrical conductivity, optical properties, and mechanical resilience due to their binder-free and low-defect structure, while the FCCVD method enables their continuous and scalable synthesis. Among the methodological FCCVD variations, aerosol CVD' is distinguished by its production of freestanding thin films comprising macroscale CNT networks, which exhibit superior performance and practical applicability.

View Article and Find Full Text PDF
Article Synopsis
  • Green hydrogen production is crucial for achieving sustainability, serving not just industry and ammonia production, but also as an alternative fuel source.
  • A new method for producing green hydrogen involves light-driven water splitting with a special bismuth vanadate (BiVO4) photoanode created using tailored dual-source precursors in aerosol-assisted chemical vapor deposition (AACVD).
  • The resulting BiVO4 thin films showed exceptional performance, with high photocurrent densities and a peak incident photon-electron conversion efficiency of 82%, which is the best for any CVD-grown BiVO4 film to date; a new WO3 precursor was also developed for a single-step W-doped BiVO4 deposition.
View Article and Find Full Text PDF

Background: The formation of secondary organic aerosols (SOA) by atmospheric oxidation reactions substantially contributes to the burden of fine particulate matter (PM), which has been associated with adverse health effects (e.g., cardiovascular diseases).

View Article and Find Full Text PDF

Electronic nicotine delivery systems (ENDS) aerosol exposures can induce endothelial dysfunction (ED) in healthy young humans and animals. Thermal degradation of ENDS solvents, propylene glycol, and vegetable glycerin (PG: VG), generates abundant formaldehyde (FA) and other carbonyls. Because FA can activate the transient receptor potential ankyrin-1 (TRPA1) sensor, we hypothesized that FA in ENDS aerosols provokes TRPA1-mediated changes that include ED and "respiratory braking"-biomarkers of harm.

View Article and Find Full Text PDF

Cigarette smoking is a risk factor for several diseases such as cancer, cardiovascular disease (CVD), and chronic obstructive pulmonary diseases (COPD), however, the underlying mechanisms are not fully understood. Alternative nicotine products with reduced risk potential (RRPs) including tobacco heating products (THPs), and e-cigarettes have recently emerged as viable alternatives to cigarettes that may contribute to the overall strategy of tobacco harm reduction due to the significantly lower levels of toxicants in these products' emissions as compared to cigarette smoke. Assessing the effects of RRPs on biological responses is important to demonstrate the potential value of RRPs towards tobacco harm reduction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!