Observation of Large Low-Field Magnetoresistance in Layered (NdNiO):NdO Films at High Temperatures.

Adv Mater

State Key Laboratory for Manufacturing Systems Engineering, Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.

Published: January 2025

Large low-field magnetoresistance (LFMR, < 1 T), related to the spin-disorder scattering or spin-polarized tunneling at boundaries of polycrystalline manganates, holds considerable promise for the development of low-power and ultrafast magnetic devices. However, achieving significant LFMR typically necessitates extremely low temperatures due to diminishing spin polarization as temperature rises. To address this challenge, one strategy involves incorporating Ruddlesden-Popper structures (ABO):AO, which are layered derivatives of perovskite structure capable of potentially inducing heightened magnetic fluctuations at higher temperatures. Here, a remarkable LFMR of up to 1.0×10% is obtained in the layered (NdNiO):NdO films with a high and wide temperature range (190-240 K). This finding underlines that the layered (NdNiO):NdO (n = 1) structure show a complex magnetic structure above T of perovskite NdNiO, where small ferromagnetic domains are embedded in the antiferromagnetic domains, raising the tunneling barriers and magnetic fluctuations at high temperatures. Furthermore, applying a low magnetic field (<0.1 T) near T effectively mitigates the disruption of antiferromagnetic order structures at boundaries, then a higher temperature is required to break the inhibition of ferromagnetic to antiferromagnetic phase transition. The results contribute significantly to the advancement of magnetic devices capable of achieving substantial LFMR at room temperature.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202415426DOI Listing

Publication Analysis

Top Keywords

large low-field
8
low-field magnetoresistance
8
observation large
4
magnetoresistance layered
4
layered ndniondo
4
ndniondo films
4
films high
4
high temperatures
4
temperatures large
4
magnetoresistance lfmr
4

Similar Publications

Observation of Large Low-Field Magnetoresistance in Layered (NdNiO):NdO Films at High Temperatures.

Adv Mater

January 2025

State Key Laboratory for Manufacturing Systems Engineering, Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.

Large low-field magnetoresistance (LFMR, < 1 T), related to the spin-disorder scattering or spin-polarized tunneling at boundaries of polycrystalline manganates, holds considerable promise for the development of low-power and ultrafast magnetic devices. However, achieving significant LFMR typically necessitates extremely low temperatures due to diminishing spin polarization as temperature rises. To address this challenge, one strategy involves incorporating Ruddlesden-Popper structures (ABO):AO, which are layered derivatives of perovskite structure capable of potentially inducing heightened magnetic fluctuations at higher temperatures.

View Article and Find Full Text PDF

Magnetic relaxation switch biosensor for detection of Vibrio parahaemolyticus based on photocleavable hydrogel.

Anal Chim Acta

January 2025

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China. Electronic address:

Background: Foodborne pathogens, particularly Vibrio parahaemolyticus (VP) found in seafood, pose significant health risks, including abdominal pain, nausea, and even death. Rapid, accurate, and sensitive detection of these pathogens is crucial for food safety and public health. However, existing detection methods often require complex sample pretreatment, which limits their practical application.

View Article and Find Full Text PDF
Article Synopsis
  • Proteoglycans like biglycan (Bgn) and decorin (Dcn) are crucial for bone health, primarily by attracting water through their unique structures, but their specific functions are not fully understood.
  • Research using knockout mouse models revealed that Bgn deficiency leads to significant bone loss and reduced resilience, while Dcn appears to have a less pronounced impact, although it compensates when Bgn is absent.
  • Both Bgn and Dcn are essential for important signaling pathways in bone maintenance, with Bgn playing a dominant role in preserving bone structure and hydration levels.
View Article and Find Full Text PDF

Synergistic Enhancement of Energy Storage Performance in NaNbO-Based Lead-Free Relaxor Ferroelectrics via Weakly Coupled Relaxation Behavior.

Small

December 2024

Collaborative Innovation Center for Exploration of Hidden Nonferrous Metal Deposits and Development of New Materials in Guangxi, Key Laboratory of Nonferrous Materials and New Processing Technology, Ministry of Education, Guangxi Key Laboratory of Optoelectronic Materials and Devices, School of Materials Science and Engineering, Guilin University of Technology, Guilin, 541004, China.

Advancements in pulsed electronic power systems depend significantly on high-performance dielectric energy storage ceramics. Lead-free NaNbO-based energy-storage ceramics are important materials for next-generation pulsed power capacitors owing to their large polarization and bandgaps. However, the high energy loss caused by the antiferroelectric-ferroelectric phase transition leads to low recoverable energy storage density and efficiency, which hinders its practical application.

View Article and Find Full Text PDF

Towards hybrid protein foods: Heat- and acid-induced hybrid gels formed from micellar casein and pea protein.

Food Res Int

December 2024

Section of Ingredient and Dairy Technology, Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Copenhagen, Denmark. Electronic address:

Article Synopsis
  • - The research investigates the creation of heat- and acid-induced gels using micellar casein and pea protein to meet the growing demand for sustainable dairy alternatives.
  • - Various mixtures of these proteins were analyzed for their gel characteristics, showing that increased pea protein content yields softer gels with distinctive textural properties compared to pure micellar casein gels.
  • - The study found that the hybrid gel made with 25% pea protein closely resembles traditional dairy paneer, indicating potential for customization in dairy alternative products based on protein ratios.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!