This study has developed a pressure sensor array based on four functionalized DNA-nanoenzymes with catalase-like activity for multiple detections of foodborne pathogens through a portable pressure manometer. Benefiting from functionalization of 4-mercaptophenylboronic acid and β-mercaptoethylamine, the diversity of nonspecific interactions between four DNA-nanoenzymes and each of the nine bacteria leads to differences in pressure response patterns by catalyzing HO to generate exclusive "fingerprints". As effective statistical tools for processing multivariate data, principal component analysis and hierarchical clustering analysis are employed to identify nine foodborne pathogens by analyzing pressure response patterns. Furthermore, the as-prepared sensor array can discriminate different mixtures of bacteria and achieve quantitative detection, with an average detection limit of 10 and 10 CFU mL for Gram-positive and Gram-negative bacteria, respectively, demonstrating its desirable practicality and satisfactory accuracy for real sample detection. This study expands insights into multiple analyses of foodborne pathogens for food safety monitoring.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.4c09288DOI Listing

Publication Analysis

Top Keywords

foodborne pathogens
16
sensor array
12
pressure sensor
8
array based
8
dna-nanoenzymes catalase-like
8
catalase-like activity
8
pressure response
8
response patterns
8
pressure
5
based dna-nanoenzymes
4

Similar Publications

This study has developed a pressure sensor array based on four functionalized DNA-nanoenzymes with catalase-like activity for multiple detections of foodborne pathogens through a portable pressure manometer. Benefiting from functionalization of 4-mercaptophenylboronic acid and β-mercaptoethylamine, the diversity of nonspecific interactions between four DNA-nanoenzymes and each of the nine bacteria leads to differences in pressure response patterns by catalyzing HO to generate exclusive "fingerprints". As effective statistical tools for processing multivariate data, principal component analysis and hierarchical clustering analysis are employed to identify nine foodborne pathogens by analyzing pressure response patterns.

View Article and Find Full Text PDF

Unlabelled: are Gram-negative, rod-shaped, entero-invasive foodborne bacteria and are frequently detected in chicken houses and facilities of poultry broiler complexes. The objective of this study was to determine the prevalence, critical entry points, and movement pattern of along different stages of a complex. A total of 1,071 environmental samples were collected from 38 production houses (8 pullet, 10 breeder, and 20 broiler), a hatchery, 6 transport trucks, and a processing plant.

View Article and Find Full Text PDF

The rapid evolution of nanotechnology has catalyzed significant advancements in the design and application of nano-sensors, particularly within the food industry, where ensuring safety and quality is of paramount concern. This review explores the multifaceted role of nano-sensors constructed from diverse nanomaterials in detecting foodborne pathogens and toxins, offering a comprehensive analysis of their operational principles, sensitivity, and specificity. Nano-sensors leverage unique physical and chemical properties at the nanoscale to enhance the detection of microbial contamination, actively contributing to food safety protocols.

View Article and Find Full Text PDF

Food spoilage causes significant economic losses and endangers human health. Developing novel antimicrobial agents and preservatives is urgently needed for anti-foodborne diseases and improving food storage. Zhen Zhu Cai () species are well-known edible plants among the East Asian populace that clear heat and anti-aging.

View Article and Find Full Text PDF

Exploring the Frontiers of Nanopore Sequencing in Food Safety and Food Microbiology.

Annu Rev Food Sci Technol

January 2025

1Food Science and Human Nutrition Department, University of Florida, Gainesville, Florida, USA; email:

Foodborne illnesses are a significant global public health challenge, with an estimated 600 million cases annually. Conventional food microbiology methods tend to be laborious and time consuming, pose difficulties in real-time utilization, and can display subpar accuracy or typing capabilities. With the recent advancements in third-generation sequencing and microbial omics, nanopore sequencing technology and its long-read sequencing capabilities have emerged as a promising platform.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!