Phenolic compounds (PC) were analyzed by UHPLC-ESI-QTOF-MS in two sorghum genotypes, harvested in two growing seasons (GS) at five distinct days after flowering (DAF) to evaluate how genotype/GS influences the PC synthesis and antioxidant capacity during grain growth. Total phenolic contents were strongly correlated with antioxidant capacity ( > 0.9, < 0.05). Globally, 97 PC were annotated, including 20 PC found irrespective of the grain developmental stage and genotype/GS. The phenolic profile clearly differs between stages: phenolic acids were the most abundant class in early stages (50%), and flavonoid accumulation becomes predominant in late ones (3/5 of total ion abundance). Dimeric and trimeric tannins were identified even in 10DAF grains. Chemometry revealed great PC variability between genotypes (27%) and important biomarkers of GS differentiation (e.g., ferulic acid). This work can input open databases of PC and paves the way to understand biosynthetic pathways of PC in sorghum and future sorghum selection.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.4c08975DOI Listing

Publication Analysis

Top Keywords

antioxidant capacity
8
phenolic
5
dynamic metabolomic
4
metabolomic changes
4
changes phenolic
4
phenolic compound
4
compound profile
4
profile antioxidant
4
antioxidant activity
4
activity developmental
4

Similar Publications

Background Severe acute pancreatitis (SAP) manifests as a critical state marked by acute abdominal symptoms, often associated with intestinal barrier dysfunction, exacerbating SAP retroactively. Ganoderic acid A (GAA) demonstrates anti-inflammatory properties in various inflammatory disorders. Nonetheless, its potential therapeutic impact on SAP and the underlying mechanisms remain unexplored.

View Article and Find Full Text PDF

Phenolic compounds (PC) were analyzed by UHPLC-ESI-QTOF-MS in two sorghum genotypes, harvested in two growing seasons (GS) at five distinct days after flowering (DAF) to evaluate how genotype/GS influences the PC synthesis and antioxidant capacity during grain growth. Total phenolic contents were strongly correlated with antioxidant capacity ( > 0.9, < 0.

View Article and Find Full Text PDF

Melatonin (MT), an indole compound, can boost plant growth under abiotic stress conditions. This experiment aims to elucidate the synergistic effect of MT and ascorbic acid (AsA) in mitigating salinity stress by assessing the photosynthetic and antioxidant capacity of the maize inbred lines H123 and W961. The results indicated that exogenous MT and AsA significantly improved photosynthetic efficiency and biomass of maize under salinity stress.

View Article and Find Full Text PDF

The damaging effects of heavy metal exposure on vital organs like the heart, liver, kidneys, and brain can be lowered by natural compounds' anti-inflammatory and anti-oxidant capacity. In the current investigation, the protective potential of savory()essential oil (EO) against lead acetate-induced multi-organ damage in rats was evaluated. Thirty female Wister Albino rats were divided into the following groups: normal, positive control given lead acetate without concomitant treatment, reference given ethylene-diamine-tetra-acetic acid and groups treated with savory EO (0.

View Article and Find Full Text PDF

Effective adaptation of flight muscles to tebuconazole-induced oxidative stress in honey bees.

Heliyon

January 2025

Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078, Budapest, Hungary.

The widespread and excessive agricultural use of azole fungicide tebuconazole poses a major threat to pollinator species including honey bee colonies as highlighted by recent studies. This issue is of growing importance, due to the intensification of modern agriculture and the increasing amount of the applied chemicals, serving as a major and recent problem from both an ecotoxicological and an agricultural point of view. The present study aims to detect the effects of acute sublethal tebuconazole exposure focusing on the redox homeostasis of honey bee flight muscles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!