A mononuclear CoIII complex (1) of a bisamide-bisalkoxide donor ligand was synthesized and thoroughly characterized. The reaction of 1 with 0.5 equiv. of m-chloroperbenzoic acid (m-CPBA) in acetonitrile at -40 °C resulted in the formation of a μ-oxodicobalt(IV) complex (2), which was characterized by an array of spectroscopic techniques, including X-ray absorption spectroscopy which revealed a short Co-Ooxo distance of 1.67 Å. Reactivity studies of 2 towards oxidation/oxygenation of hydrocarbon C-H bond and triphenylphosphine or thioanisole derivatives have been examined. UV-vis spectroscopy studies showed the appearance of clear isosbestic points during the oxidation of substrates together with a neat transformation of 2 to 1. Detailed kinetic investigations established that 2 follows a Concerted Proton-Electron Transfer (CPET) mechanism for hydrocarbon oxidation and has a weak electrophilic character. Catalytic behavior of 1 was noted towards the oxygen atom transfer reactions. This study showcases the spectroscopic investigation and reactivity studies of a CoIV(μ-O)CoIV moiety. Although the FeIV analog of such a core has been described before, the study describes the first example with a CoIV center.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.202404536 | DOI Listing |
Croat Med J
December 2024
Dorja Vočanec, Center for Health Systems, Policies and Diplomacy, Andrija Štampar School of Public Health, University of Zagreb School of Medicine, Zagreb, Croatia,
Org Lett
January 2025
Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China.
Radical-initiated functionalization of bicyclo[1.1.0]butanes (BCBs) is a straightforward approach to accessing diverse cyclobutane derivatives.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
January 2025
Technical University of Darmstadt, Clemens-Schöpf Institute of Organic Chemistry and Biochemistry, Department of Chemistry, Peter-Grünberg-Straße 4, 64287 Darmstadt, Germany.
Molecular glues (MGs) and proteolysis-targeting chimeras (PROTACs) are used to modulate protein-protein interactions (PPIs), via induced proximity between compounds that have little or no affinity for each other naturally. They promote either reversible inhibition or selective degradation of a target protein, including ones deemed undruggable by traditional therapeutics. Though native MS (nMS) is capable of analyzing multiprotein complexes, the behavior of these artificially induced compounds in the gas phase is still not fully understood, and the number of publications over the past few years is still rather limited.
View Article and Find Full Text PDFMed Chem
January 2025
Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune 70000, Morocco.
Background: Oxidative stress is strongly linked to neurodegeneration through the activation of c-Abl kinase, which arrests α-synuclein proteolysis by interacting with parkin interacting substrate (PARIS) and aminoacyl tRNA synthetase complex-interacting multifunctional protein 2 (AIMP2). This activation, triggered by ataxia-telangiectasia mutated (ATM) kinase, leads to dopaminergic neuron loss and α-synuclein aggregation, a critical pathophysiological aspect of Parkinson's disease (PD). To halt PD progression, pharmacological inhibition of c-Abl kinase is essential.
View Article and Find Full Text PDFMed Chem
January 2025
Laboratory of Biotechnology and Natural Resources Valorization, Faculty of Sciences of Agadir, Ibn Zohr University, Agadir, Morocco.
Background: We continue to struggle with the prevention and treatment of the influenza virus. The 2009 swine flu pandemic, caused by the H1N1 strain of influenza A, resulted in numerous fatalities. The threat of influenza remains a significant concern for global health, and the development of novel drugs targeting these viruses is highly desirable.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!