Hepatic ischemia-reperfusion injury (IRI) poses a significant threat to clinical outcomes and graft survival during hemorrhagic shock, hepatic resection, and liver transplantation. Current pharmacological interventions for hepatic IRI are inadequate. In this study, we identified ginsenoside Rk2 (Rk2), a rare dehydroprotopanaxadiol saponin, as a promising agent against hepatic IRI through high-throughput screening. The pharmacological effects and molecular mechanisms of Rk2 on hepatic IRI were further evaluated and elucidated in vitro and in vivo. Rk2 significantly reduced inflammation and apoptosis caused by oxygen-glucose deprivation and reperfusion in hepatocytes and dose dependently protected against hepatic I/R-induced liver injury in mice. Integrated approaches, including network pharmacology, molecular docking, transcriptome analysis, and isothermal titration calorimetry, along with experimental validation, indicated that Rk2 protects against hepatic IRI by targeting and activating the AKT (RAC serine/threonine protein kinase) signaling pathway. Pharmacological inhibition of AKT pathway or knockdown of AKT1 effectively diminished protective effects of Rk2. Rk2 directly binds to AKT1, facilitating its translocation from the cytoplasm to plasma membrane. This process markedly enhanced AKT interaction with PDPK1, promoting the activation of AKT1 and its downstream signaling. Our findings demonstrate that Rk2 protects against hepatic IRI by activating AKT signaling through direct binding to AKT1 and facilitating its membrane translocation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11731106PMC
http://dx.doi.org/10.1002/mco2.70047DOI Listing

Publication Analysis

Top Keywords

hepatic iri
20
ginsenoside rk2
8
hepatic
8
membrane translocation
8
rk2
8
rk2 rk2
8
rk2 protects
8
protects hepatic
8
activating akt
8
akt1 facilitating
8

Similar Publications

Ischemia-reperfusion injury (IRI) is a common pathogenic situation that arises throughout all liver surgeries, including liver transplants. We aimed to compare the preventive effects of valsartan (VST) against valsartan + sacubitril (LCZ696) on hepatic injury caused by IRI. A total of thirty-six male Westar albino rats were split into six groups randomly: sham, IRI, VST + IRI, LCZ696 + IRI, VST, and LCZ696.

View Article and Find Full Text PDF

Recipients often suffer from hyperlactatemia during liver transplantation (LT), but whether hyperlactatemia exacerbates hepatic ischemia-reperfusion injury (IRI) after donor liver implantation remains unclear. Here, the role of hyperlactatemia in hepatic IRI is explored. In this work, hyperlactatemia is found to exacerbate ferroptosis during hepatic IRI.

View Article and Find Full Text PDF

Hepatic ischemia-reperfusion injury (IRI) poses a significant threat to clinical outcomes and graft survival during hemorrhagic shock, hepatic resection, and liver transplantation. Current pharmacological interventions for hepatic IRI are inadequate. In this study, we identified ginsenoside Rk2 (Rk2), a rare dehydroprotopanaxadiol saponin, as a promising agent against hepatic IRI through high-throughput screening.

View Article and Find Full Text PDF

FTO Alleviates Hepatic Ischemia-Reperfusion Injury by Regulating Apoptosis and Autophagy.

Gastroenterol Res Pract

January 2025

Department of Hepatobiliary and Pancreatic Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Despite N-methyladenosine (mA) being closely involved in various pathophysiological processes, its potential role in liver injury is largely unknown. We designed the current research to study the potential role of fat mass and obesity-associated protein (FTO), an mA demethylase, on hepatic ischemia-reperfusion injury (IRI). Wild-type mice injected with an adeno-associated virus carrying fat mass and obesity-associated protein (AAV-FTO) or adeno-associated virus carrying green fluorescent protein (GFP) (AAV-GFP) were subjected to a hepatic IRI model in vivo.

View Article and Find Full Text PDF

This study aimed to investigate the protective effects of vitamin B complex and alpha-lipoic acid (ALA) pre-treatments on hepatic ischemia-reperfusion injury (IRI) in rats, focusing on their potential to enhance antioxidant defense mechanisms and reduce post-ischemic liver damage. Thirty male Wistar albino rats were divided into four groups: sham group (n = 10), IRI group (n = 10), vitamin B group (n = 10), vitamin B + ALA group (n = 10). In the IRI, vitamin B, and vitamin B + ALA groups, the rats underwent 45 min of hepatic ischemia followed by 60 min of reperfusion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!