Biofilm infections are chronic infections which are difficult to diagnose. Biofilm infections are tolerant to antibiotics and the defense mechanisms of the host. Patients with the genetic disease cystic fibrosis (CF) produce viscid mucus in the respiratory tract and therefore suffer from chronic biofilm infections in their lungs and paranasal sinuses. The most important microorganism is the mucoid phenotype of which causes chronic biofilm infections in the lungs of CF patients and untreated patients succumb as children if they contact this biofilm infection. Since CF patients are treated in CF Centers all over the world, it is possible to do longitudinal studies on epidemiology, pathophysiology, diagnosis, prevention and treatment of biofilm infection which is not possible if such patients are not followed in specialized centers. This survey describes the research through several decades in the Danish CF Center in Copenhagen which have changed the epidemiology, treatment, prophylaxis and prognosis of CF patients worldwide. Based on these results ESCMID Guidelines for diagnosis and treatment of biofilm infections were published which have influenced biofilm research and treatment in other areas.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11732244PMC
http://dx.doi.org/10.1016/j.bioflm.2024.100246DOI Listing

Publication Analysis

Top Keywords

biofilm infections
20
biofilm
9
cystic fibrosis
8
chronic biofilm
8
infections lungs
8
biofilm infection
8
infection patients
8
treatment biofilm
8
infections
6
patients
6

Similar Publications

catheter-related bloodstream infections (CRBSIs) are an increasing concern in Japanese hospitals. Although their clinical characteristics have been explored, the genetic relationships and virulence profiles of isolates from CRBSIs remain understudied. Here, using advanced genomic techniques, we investigated the genetic diversity, phylogenetic relationships, and virulence profiles of isolates from patients with bloodstream infections.

View Article and Find Full Text PDF

Unlabelled: is an acid-fast, aerobic, non-motile, and biofilm-forming bacterium. The increasing prevalence of mycobacterial infections makes it necessary to find new methods to combat the resistance of bacteria to conventional antibiotics. is an emerging pathogen that is intrinsically drug resistant due to several factors, including an impermeable cell envelope, drug efflux pumps, target-modifying enzymes, and the ability to form thick, robust biofilms.

View Article and Find Full Text PDF

The chick embryo chorioallantoic membrane (CAM) tumor model is a valuable preclinical model for studying the tumor-colonizing process of serovar Typhimurium. It offers advantages such as cost-effectiveness, rapid turnaround, reduced engraftment issues, and ease of observation. In this study, we explored and validated the applicability of the partially immune-deficient CAM tumor model.

View Article and Find Full Text PDF

The reason why certain bacteria, , (PA), produce acetylated alginate (Alg) in their biofilms remains one of the most intriguing facts in microbiology. Being the main structural component of the secreted biofilm, like the one formed in the lungs of cystic fibrosis (CF) patients, Alg plays a crucial role in protecting the bacteria from environmental stress and potential threats. Nonetheless, to investigate the PA biofilm environment and its lack of susceptibility to antibiotic treatment, the currently developed biofilm models use native seaweed Alg, which is a non-acetylated Alg.

View Article and Find Full Text PDF

Cholesterol-terminated cationic lipidated oligomers (CLOs) as a new class of antifungals.

J Mater Chem B

January 2025

Drug Delivery, Disposition, and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde, Parkville, VIC, 3052, Australia.

Infections caused by fungal pathogens are a global health problem, and have created an urgent need for new antimicrobial strategies. This report details the synthesis of lipidated 2-vinyl-4,4-dimethyl-5-oxazolone (VDM) oligomers an optimized Cu(0)-mediated reversible-deactivation radical polymerization (RDRP) approach. Cholesterol-Br was used as an initiator to synthesize a library of oligo-VDM (degree of polymerisation = 5, 10, 15, 20, and 25), with an α-terminal cholesterol group.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!