A large portion of the Intrinsically Disordered Regions (IDRs) in protein sequences interact with proteins, nucleic acids, and other types of ligands. Correspondingly, dozens of sequence-based predictors of binding IDRs were developed. A recently completed second community-based Critical Assessments of protein Intrinsic Disorder prediction (CAID2) evaluated 32 predictors of binding IDRs. However, CAID2 considered a rather narrow scenario by testing on 78 proteins with binding IDRs and not differentiating between different ligands, in spite that virtually all predictors target IDRs that interact with specific types of ligands. In that scenario, several intrinsic disorder predictors predict binding IDRs with accuracy equivalent to the best predictors of binding IDRs since large majority of IDRs in the 78 test proteins are binding. We substantially extended the CAID2's evaluation by using the entire CAID2 dataset of 348 proteins and considering several arguably more practical scenarios. We assessed whether predictors accurately differentiate binding IDRs from other types of IDRs and how they perform when predicting IDRs that interact with different ligand types. We found that intrinsic disorder predictors cannot accurately identify binding IDRs among other disordered regions, majority of the predictors of binding IDRs are ligand type agnostic (i.e., they cross predict binding in IDRs that interact with ligands that they do not cover), and only a handful of predictors of binding IDRs perform relatively well and generate reasonably low amounts of cross predictions. We also suggest a number of future research directions that would move this active field of research forward.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11732247 | PMC |
http://dx.doi.org/10.1016/j.csbj.2024.12.009 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!