Facile one-pot reduction of β-nitrostyrenes to phenethylamines using sodium borohydride and copper(II) chloride.

Beilstein J Org Chem

Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 København Ø, Denmark.

Published: January 2025

Phenethylamines and phenylisopropylamines of scientific relevance can be prepared with a NaBH/CuCl system in 10 to 30 minutes via reduction of substituted β-nitrostyrenes. This one-pot procedure allows the quick isolation of substituted β-nitrostyrene scaffolds with 62-83% yield under mild conditions, without the need for special precautions, inert atmosphere, and time-consuming purification techniques.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11729678PMC
http://dx.doi.org/10.3762/bjoc.21.4DOI Listing

Publication Analysis

Top Keywords

facile one-pot
4
one-pot reduction
4
reduction β-nitrostyrenes
4
β-nitrostyrenes phenethylamines
4
phenethylamines sodium
4
sodium borohydride
4
borohydride copperii
4
copperii chloride
4
chloride phenethylamines
4
phenethylamines phenylisopropylamines
4

Similar Publications

Nowadays, benzimidazole and its derivatives are widely assembled into multifunctional materials with various properties such as mechanochromism, photochromism, thermochromism and electrochromism. Herein, two novel zinc(II) coordination compounds, [Zn(L)Br]·2HO (1) and [Zn(L)Cl]·2HO (2) (L = tetra(1-benzo[]imidazol-2-yl)ethene), have been constructed one-pot facile synthesis from bis(1-benzo[]imidazol-2-yl)methane (L) and zinc(II) salts. The ligand L with a CC double bond was formed by C-C coupling of two sp-C atoms of L in solvothermal synthesis, which provides a new strategy to generate the conjugation system conveniently.

View Article and Find Full Text PDF

Structural Isomerism of {Ag14}10+ Nanocluster Encapsulated by Bowl-like Polyoxometalates.

Angew Chem Int Ed Engl

January 2025

Beijing Institute of Technology, School of Chemistry and Chemical Engineering, 8th Liangxiang East Road, Room 829, Eco-Industrial Building, Beijing, 102488, Beijing, CHINA.

The structural isomerism of atomically precise nanoclusters provides a preeminent theoretical model to investigate the structure-property relationships. Herein, we synthesized three bowl-like polyoxometalate (POM)-encapsulated Ag nanoclusters (denoted as {Ag14(Sb3W30)2}-1, {Ag14(Sb3W30)2}-1a, and {Ag14(Sb3W30)2}-2) via a facile one-pot solvothermal approach. Among them, for the first time, an unprecedented isomeric {Ag14}10+ nanoclusters are obtained in polyoxoanions {Ag14(Sb3W30)2}-1 and {Ag14(Sb3W30)2}-2, which should be probably induced by the different distribution of coordinating O atoms in two isomeric bowl-like {Sb3W30} ligands.

View Article and Find Full Text PDF

KOBu-Promoted [3 + 2] Cycloaddition of Dimethyl Sulfoxide with Fullerenes.

Org Lett

January 2025

State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China.

KOBu-promoted [3 + 2] cycloaddition of dimethyl sulfoxide (DMSO) with fullerenes has been developed for facile and efficient one-pot synthesis of 1,2,3,4-cyclic sulfoxide-fused [60]/[70]fullerene dihydrides, which offers a versatile platform for the site-selective preparation of various fullerene multiadducts with a wide range of functional groups. The utility of these tetra-functionalized fullerenes is demonstrated by the successful application as electron-transport materials in perovskite solar cells.

View Article and Find Full Text PDF

Highly Green Fluorescent Carbon Dots from Gallic Acid: A Turn-On Sensor toward Pb Ions.

ACS Omega

January 2025

Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.

Carbon dots (CDs) are emerging novel fluorescent sensing nanomaterials owing to their tunable optical properties, biocompatibility, and eco-friendliness. Herein, we report a facile one-pot hydrothermal route for the synthesis of highly green fluorescent CDs using gallic acid (GA) as a single carbon source in ,-dimethylformamide (DMF) solvent, which serves as a nitrogen source and reaction medium. The optical properties of the synthesized GA-DMF CDs were systematically characterized by using UV-vis and photoluminescence spectroscopy, revealing strong green fluorescence.

View Article and Find Full Text PDF

Nowadays, metal-organic frameworks (MOFs) have been emerged as an efficient platform for enzyme immobilization due to their high porosity, tunability, and chemical versatility. In this study, a series of hybrid lipase@NKMOF-101-M (M = Mg, Mn, Zn, Co, or Ni) biocatalysts were constructed through a facile in situ encapsulation method, and the encapsulation and immobilization of lipase in MOFs were carefully validated. The catalytic activity of lipase@NKMOF-101-Mn was 2-fold higher than that of lipase@ZIF-8 and 3-fold higher than that of lipase@MCM-41 due to its excellent dispersibility and hydrophobicity in hexane.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!