Gold nanorod-based engineered nanogels for cascade-amplifying photothermo-enzymatic synergistic therapy.

J Pharm Anal

School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China.

Published: December 2024

Reactive oxygen species (ROS)-mediated anticancer modalities, which disturb the redox balance of cancer cells through multi-pathway simulations, hold great promise for effective cancer management. Among these, cooperative physical and biochemical activation strategies have attracted increasing attention because of their spatiotemporal controllability, low toxicity, and high therapeutic efficacy. Herein, we demonstrate a nanogel complex as a multilevel ROS-producing system by integrating chloroperoxidase (CPO) into gold nanorod (AuNR)-based nanogels (ANGs) for cascade-amplifying photothermal-enzymatic synergistic tumor therapy. Benefiting from photothermal-induced hyperthermia upon near-infrared (NIR) laser exposure, the exogenous ROS (including HO) were boosted by the AuNR nanogel owing to the intercellular stress response. This ultimately promoted the efficient enzyme-catalyzed reaction of loaded CPO combined with the rich endogenous HO in tumor cells to significantly elevate intracellular ROS levels above the threshold for improved therapeutic outcomes. Both and studies have verified the cascade-amplifying ROS-mediated antitumor effects, providing feasible multimodal synergistic tactics for tumor treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11731229PMC
http://dx.doi.org/10.1016/j.jpha.2024.101139DOI Listing

Publication Analysis

Top Keywords

gold nanorod-based
4
nanorod-based engineered
4
engineered nanogels
4
nanogels cascade-amplifying
4
cascade-amplifying photothermo-enzymatic
4
photothermo-enzymatic synergistic
4
synergistic therapy
4
therapy reactive
4
reactive oxygen
4
oxygen species
4

Similar Publications

Reactive oxygen species (ROS)-mediated anticancer modalities, which disturb the redox balance of cancer cells through multi-pathway simulations, hold great promise for effective cancer management. Among these, cooperative physical and biochemical activation strategies have attracted increasing attention because of their spatiotemporal controllability, low toxicity, and high therapeutic efficacy. Herein, we demonstrate a nanogel complex as a multilevel ROS-producing system by integrating chloroperoxidase (CPO) into gold nanorod (AuNR)-based nanogels (ANGs) for cascade-amplifying photothermal-enzymatic synergistic tumor therapy.

View Article and Find Full Text PDF

The prevention, diagnosis and treatment of cancer have always been the focus of medical research. In this study, a label-free, rapid, simple, sensitive, and specific method for the detection of HPV16 E7 oncoprotein was developed. The electrochemical biosensor platform was constructed by magnetic self-assembly of α-FeO/FeO@Au nanocomposites onto the surface of magnetic glass carbon electrode (MGCE), and the nanocomposite was connected to aptamer through AuS bond to construct a probe to capture HPV16 E7.

View Article and Find Full Text PDF

Machine learning-assisted SERS sensor for fast and ultrasensitive analysis of multiplex hazardous dyes in natural products.

J Hazard Mater

January 2025

Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; National Key Laboratory of Chinese Medicine Modernization Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China. Electronic address:

The adulteration of natural products with multiple azo dyes has become a serious public health concern. Thus, on-site trace additive detection is demanded. Herein, we developed a gold-nanorod-based surface-enhanced Raman scattering (SERS) sensor to detect trace amounts of azo dyes, including lemon yellow, sunset yellow, golden orange II, acid red 73, coccine, and azorubine.

View Article and Find Full Text PDF

Human full-length (fl) αSyn fibrils, key neuropathological hallmarks of Parkinson's disease (PD), generate intense optical activity corresponding to the surface plasmon resonance of interacting gold nanorods. Herein, we analysed fibril-enriched protein extracts from mouse and human brain samples as well as from SK-N-SH cell lines with or without human fl and C-terminally truncated (Ctt) αSyn overexpression and exposed them to αSyn monomers, recombinant fl αSyn fibrils or Ctt αSyn fibrils. -generated human recombinant fl and Ctt αSyn fibrils and fibrils purified from SK-N-SH cells with fl or Ctt αSyn overexpression were also analysed using transmission electron microscopy (TEM) to gain insights into the nanorod-fibril complexes.

View Article and Find Full Text PDF

Alpha-synuclein oligomers play a crucial role in the early diagnosis of Parkinson's disease (PD). In this study, a mercaptoundecanoic acid (MUA)-capped gold nanorod (GNR)-coated and chitosan (CH)-immobilized fiber optic probe has shown considerable sensitivity of its detection. The proposed U-shaped fiber optic biosensor based on localized surface plasmon resonance (LSPR) was applied to detect α-syn oligomer (OA) biomarker.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!