Neuromuscular controllers (NMCs) offer a promising approach to adaptive and task-invariant control of exoskeletons for walking assistance, leveraging the bioinspired models based on the peripheral nervous system. This article expands on our previous development of a novel structure for NMCs with modifications to the virtual muscle model and reflex modulation strategy. The modifications consist firstly of simplifications to the Hill-type virtual muscle model, resulting in a more straightforward formulation and reduced number of parameters; and second, using a finer division of gait subphases in the reflex modulation state machine, allowing for a higher degree of control over the shape of the assistive profile. Based on the proposed general structure, we present two controller variants for hip exoskeletons, with four- and five-state reflex modulations (NMC-4 and NMC-5). We used an iterative data-driven approach with two tuning stages (i.e., muscle parameters and reflex gains) to determine the controller parameters. Biological joint torque profiles and optimal torque profiles for metabolic cost reduction were used as references for the final tuning outcome. Experimental testing under various walking conditions demonstrated the capability of both variants for adapting to the locomotion task with minimal parameter adjustments, mostly in terms of timing. Furthermore, NMC-5 exhibited better alignment with biological and optimised torque profiles in terms of timing characteristics and relative magnitudes, resulting in less negative mechanical work. These findings firstly validate the adequacy of the simplified muscle model for assistive controllers, and demonstrate the utility of a more nuanced reflex modulation in improving the assistance quality.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11729522 | PMC |
http://dx.doi.org/10.1017/wtc.2024.11 | DOI Listing |
Trop Anim Health Prod
January 2025
Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
To improve the quality and yield of the Korean beef industry, selection criteria often focus on estimated breeding values for carcass weight (CWT), eye muscle area (EMA), backfat thickness (BF), and marbling score (MS). This study estimated genetic parameters and assessed the accuracy of genomic estimated breeding values (GEBVs) using SNP weighting methods. We compared the accuracy of these methods with the genomic best linear unbiased prediction (GBLUP) and various Bayesian approaches (BayesA, BayesB, BayesC, and BayesCPi) for the specified traits.
View Article and Find Full Text PDFJ Nephrol
January 2025
Department of Nephrology, Matsunami General Hospital, Gifu, Japan.
Background: The relationship between the psoas muscle gauge (PMG), a combined sarcopenia indicator obtained from psoas muscle index (PMI) and psoas muscle density (PMD), and adverse clinical outcomes in patients on hemodialysis remains unclear. We examined whether psoas muscle gauge could predict all-cause mortality and new cardiovascular events more accurately than psoas muscle index in these patients.
Methods: We retrospectively included 217 hemodialysis patients who underwent abdominal computed tomography.
Urol Res Pract
January 2025
Department of Pharmacology, Ankara University, Faculty of Pharmacy, Ankara, Türkiye.
Objective: To investigate the effects of testosterone (T) treatment, with or without levothyroxine, the most widely used and least effective medication for managing hypothyroidism, on the functional and histological changes in propylthiouracil (PTU)- induced hypothyroid rat bladders.
Methods: Male rats (n=35) were split into control, hypothyroid, hypothyroid rats treated with levothyroxine (20 µg/kg/day, oral, 2-weeks), hypothyroid rats treated with Sustanon (10 mg/kg,iIM, once/week, 2-weeks), and hypothyroid rats treated with combined treatment groups. Hypothyroidism was induced by PTU (0.
Urol Res Pract
January 2025
Department of Pediatric Surgery, Zonguldak Bulent Ecevit University, Faculty of Medicine, Zonguldak, Türkiye.
Objective: Bladder tissue models have been developed using smooth muscle cells (SMCs) on various scaffolds to mimic bladder morphology and physiology. This study investigates the effects of co-culturing fetal and adult SMCs on growth properties and protein profiles to understand cellular interactions and population kinetics.
Methods: Bladder tissue samples from 10 adult and 10 fetal New Zealand rabbits were divided into 5 groups: adult SMCs (A), fetal SMCs (F), 50%A+50%F (A+F), 75%A+25%F (3A+F), and 25%A+75%F (A+3F).
Ann Med
December 2025
Central Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
Background: Despite surgical and intravesical chemotherapy interventions, non-muscle invasive bladder cancer (NMIBC) poses a high risk of recurrence, which significantly impacts patient survival. Traditional clinical characteristics alone are inadequate for accurately assessing the risk of NMIBC recurrence, necessitating the development of novel predictive tools.
Methods: We analyzed microarray data of NMIBC samples obtained from the ArrayExpress and GEO databases.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!