The cardiac microenvironment profoundly restricts the efficacy of myocardial regeneration tactics for the treatment of myocardial infarction (MI). A prospective approach for MI therapeutics encompasses the combined strategy of scavenging reactive oxygen species (ROS) to alleviate oxidative stress injury and facilitating macrophage polarization towards the regenerative M2 phenotype. In this investigation, we fabricated a ROS-sensitive hydrogel engineered to deliver our previously engineered IL-1β-VHH for myocardial restoration. In mouse and rat models of myocardial infarction, the therapeutic gel was injected into the pericardial cavity, effectively disseminated over the heart surface, forming an in situ epicardial patch. The IL-1β-VHH released from the hydrogel exhibited penetrative potential into the myocardium. Our results imply that this infarct-targeting gel can adhere to the damaged cardiac tissue and augment the quantity of anti-IL-1β antibodies. Moreover, the anti-IL-1β hydrogel safeguards cardiomyocytes from apoptosis by neutralizing IL-1β and inducing M2-type polarization within the myocardial infarction regions, thereby facilitating therapeutic cardiac repair. Our results emphasize the effectiveness of this synergistic comprehensive treatment modality in the management of MI and showcase its considerable potential for promoting recovery in infarcted hearts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11732248PMC
http://dx.doi.org/10.1016/j.bioactmat.2024.12.013DOI Listing

Publication Analysis

Top Keywords

myocardial infarction
16
myocardial
6
injection ros-responsive
4
hydrogel
4
ros-responsive hydrogel
4
hydrogel loaded
4
loaded il-1β-targeted
4
il-1β-targeted nanobody
4
nanobody ameliorating
4
ameliorating myocardial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!