Renal interstitial fibrosis (RIF) is a common pathway in chronic kidney disease (CKD) that ultimately leads to end-stage renal failure, worsening both glomerulosclerosis and interstitial fibrosis. Ten percent of the adult population in the world suffers from CKD, and as the ageing population continues to rise, it is increasingly regarded as a global threat-a silent epidemic. CKD has been discovered to be closely associated with both long noncoding RNAs (lncRNAs) and microRNAs (miRNAs), while the precise molecular processes behind this relationship are still unclear. This study evaluated the impact of miR-542-3p and lncRNA TUG1 on renal fibrosis, along with the underlying regulatory mechanisms. Through in vitro tube formation assays, research demonstrated that knocking down lncRNA TUG1 may enhance angiogenesis and repair damaged endothelial cell-cell connections. We used Western blot and qRT-PCR methods in the unilateral ureteral obstruction (UUO) model to identify tissue hypoxia and fibrotic lesions. Additionally, a cutting-edge method known as fluorescence microangiography (FMA) was employed to detect damage to the peritubular capillaries (PTCs), with MATLAB software utilised for data evaluation. Furthermore, the coexpression of CD31 and α-SMA helped identify cells in the obstructed kidney that were transitioning from endothelium to myofibroblasts. On the contrary, lncRNA TUG1 downregulation showed a protective effect against the transition from endothelial cells to myofibroblasts. Additionally, knocking down lncRNA TUG1 has been shown to reduce the expression of fibrotic markers by alleviating tissue hypoxia. This effect was significantly counteracted by the inhibition of miR-542-3p. Collectively, our findings offer fresh perspectives on how lncRNA TUG1 and the miR-542-3p/HIF-1α/VEGF axis are regulated as renal fibrosis advances.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11730199 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e40891 | DOI Listing |
Heliyon
January 2025
Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, 221002, China.
Renal interstitial fibrosis (RIF) is a common pathway in chronic kidney disease (CKD) that ultimately leads to end-stage renal failure, worsening both glomerulosclerosis and interstitial fibrosis. Ten percent of the adult population in the world suffers from CKD, and as the ageing population continues to rise, it is increasingly regarded as a global threat-a silent epidemic. CKD has been discovered to be closely associated with both long noncoding RNAs (lncRNAs) and microRNAs (miRNAs), while the precise molecular processes behind this relationship are still unclear.
View Article and Find Full Text PDFGenes (Basel)
December 2024
Department of Medicine, Beijing Zhongwei Research Center, Biological and Translational Medicine, Beijing 100161, China.
Ischemic stroke is a serious cerebrovascular disease, highlighting the urgent need for reliable biomarkers for early diagnosis. Recent reports suggest that long non-coding RNAs (lncRNAs) can be potential biomarkers for ischemic stroke. Therefore, our study seeks to investigate the potential diagnostic value of lncRNAs for ischemic stroke by analyzing existing research.
View Article and Find Full Text PDFInflammation
December 2024
Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
Microglia, the central nervous system's primary immune cells, play a key role in the progression of cerebral ischemic stroke, particularly through their involvement in pyroptosis. The long non-coding RNA taurine up-regulated gene 1 (Tug1) is elevated during ischemic stroke and is critical in driving post-stroke neuroinflammation. However, the underlying molecular mechanisms remain unclear.
View Article and Find Full Text PDFBiochem Genet
December 2024
Department of Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, 14114, Iran.
Tissue Cell
February 2025
Department of Ophthalmology, Sichuan Provincial People's Hospital, Chengdu, China; School of Medicine, University of Electronic Science and Technology of China, Chengdu, China. Electronic address:
Diabetic retinopathy (DR) has been proven to be a leading cause of blindness. This study aimed to investigate the effect of Yes-associated protein 1 (YAP1) on the hypoxia-induced DR mice retinal microvascular endothelial cells (MRMECs) model. The hypoxia-induced DR MRMECs model was generated by treating in hypoxia circumstance (5 % CO and 3 % O) for 48 h.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!