Background: TG02 is a peptide-based cancer vaccine eliciting immune responses to oncogenic codon 12/13 mutations. This phase 1 clinical trial (NCT02933944) assessed the safety and immunological efficacy of TG02 adjuvanted by GM-CSF in patients with -mutant colorectal cancer.

Methods: In the interval between completing CRT and pelvic exenteration, patients with resectable mutation-positive, locally advanced primary or current colorectal cancer, received 5-6 doses of TG02/GM-CSF. Immune response was defined as a positive delayed-type hypersensitivity or positive T cell proliferation assay response. Tumour biopsies were analysed for tumour-infiltrating lymphocytes (TILs) and blood for CEA and ctDNA. TILs and tumouroids were cultured, characterised and tested for their killing efficacy.

Results: Six patients with rectal cancer were recruited to evaluate TG02. Three patients experienced a total of 16 treatment-related adverse events; all grade 1. Four of the 6 patients (66.7 %) had at least one vaccine-induced TG02 immune response. Flow cytometry analysis showed high proportion of PD-1-expressing TILs in 2 of 3 patient specimens' post-treatment. A partial to near complete pathological response was reported in 4 of 6 patients.

Conclusions: This study demonstrated that TG02/GM-CSF was well tolerated and induced a vaccine specific systemic immune response in the majority of patients. Low numbers limit conclusive clinical outcome reporting. High PD-1 expression on post-treatment TILs encourages the addition of an immune checkpoint inhibitor to TG02 and potentially other studies of peptide vaccines in future studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11730558PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e41364DOI Listing

Publication Analysis

Top Keywords

immune response
12
locally advanced
8
advanced primary
8
colorectal cancer
8
patients
7
tg02
6
immune
5
response
5
non-randomised open-label
4
open-label exploratory
4

Similar Publications

Background: Breast cancer remains a significant global health challenge, requiring innovative therapeutic strategies. In silico methods, which leverage computational tools, offer a promising pathway for vaccine development. These methods facilitate antigen identification, epitope prediction, immune response modelling, and vaccine optimization, accelerating the design process.

View Article and Find Full Text PDF

Background: The use of bacterial vaccines as a potential Bacterial-Based Cancer Therapy (BBCT) presents an innovative approach, transforming these vaccines into multifunctional tools capable of serving dual roles in medicine.

Materials And Methods:  This study aimed to conduct in vitro, immunity-independent experiments to investigate the anticancer properties of vaccine-derived bacterial toxoids on various cancer cell lines. Six concentrations of the DTP vaccine (5 x 10-4, 25 x 10-5, 125 x 10-6, 625 x 10-7, 312 x 10-7, and 15 x 10-6 µg/ml) were tested on two cancer cell lines (SKG and HCAM) and a normal Rat Embryonic Fibroblast (REF) cell line.

View Article and Find Full Text PDF

Background: LIN28, a highly conserved RNA-binding protein, regulate a wide variety of post-transcriptional cellular processes. The current study aimed to identify genetic variants of five single nucleotide polymorphisms (SNPs) in the LIN28B gene (rs221634, rs22163, rs314276, rs9404590, and rs12194974) and their association with Breast cancer.

Method: 220 patients and 230 controls were genotyped by the RFLP assay for Lin28B gene variants.

View Article and Find Full Text PDF

Genomic profiling at a single center cracks the code in inborn errors of immunity.

Intern Emerg Med

January 2025

Unit of Internal Medicine and Clinical Oncology "G. Baccelli", Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro Medical School, Bari, Italy.

Inborn errors of immunity (IEI) entail a diverse group of disorders resulting from hereditary or de novo mutations in single genes, leading to immune dysregulation. This study explores the clinical utility of next-generation sequencing (NGS) techniques in diagnosing monogenic immune defects. Eight patients attending the immunodeficiency clinic and with unclassified antibody deficiency were included in the analysis.

View Article and Find Full Text PDF

Background: Cervical cancer is the fourth most common cancer worldwide in females. This occurs primarily due to the infection of high-risk Human Papilloma Virus (HPV), although in advanced stages it requires support from host cellular factors. BRN3A is one such host cellular factors, whose expression remains high in cervical cancers and upregulates tumorigenic HPV gene expression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!