Herein, we report the biosynthesis of pure NiO and NiO nanoparticles doped with Silver (Ag@NiO NPs) 2, 4, 6, and 8 mol% from aloe vera extract by solution combustion method at 400 °C and calcined at 500 °C for 3 h. By utilizing silver-doped NiO nanoparticles synthesized with Aloe Vera latex, which not only enhances the material's properties but also promotes environmentally friendly fabrication methods. The morphological, structural elemental compositions were analysed through SEM, HRTEM, SAED, XRD and EDAX. The band gap was determined as 2.48, 2.57, 2.58, 2.60, and 2.62 eV for pure NiO, 2-8% Silver doped NiO using Kubelka-Munk plot. The photocatalytic potential of the 6 % Ag doped NiO has been explored by assessing their effectiveness in degrading fast blue (FB) dye, demonstrating significant activity at 605 nm. Remarkably, with 120 min of UV radiation, the FB dye reaches an impressive photodegradation rate of 98 %, making the dye nearly colorless. The green synthesized NPs were tested in 1 M KOH to investigate their supercapacitor performance as an effective material for electrode. The Cyclic Voltammetry (CV), the Galvanostatic charge-discharge (GCD), and the Electrochemical impedance spectroscopy (EIS) studies were conducted to determine the materials' electrochemical activity. The GCD study for 6 mol% Ag@NiO in a 3-electrode system shows a capacitance of 535 F g at a current density of 1 Ag. 6 mol% Ag@NiO modified electrode shows excellent long-term stability, retention of more than 92 % of its initial capacitance after the operation of 2000 cycles. The important outcome of this work lies in multifunctional application of the as-synthesized materials, demonstrating their effectiveness for both efficient energy storage and improved photocatalytic performance, paving the way for sustainable and multifunctional devices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11730549 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e41322 | DOI Listing |
Heliyon
January 2025
Advanced Materials Research Laboratory, Department of Physics, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia.
Herein, we report the biosynthesis of pure NiO and NiO nanoparticles doped with Silver (Ag@NiO NPs) 2, 4, 6, and 8 mol% from aloe vera extract by solution combustion method at 400 °C and calcined at 500 °C for 3 h. By utilizing silver-doped NiO nanoparticles synthesized with Aloe Vera latex, which not only enhances the material's properties but also promotes environmentally friendly fabrication methods. The morphological, structural elemental compositions were analysed through SEM, HRTEM, SAED, XRD and EDAX.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
The present investigation seeks to customize the optical, magnetic, and structural characteristics of nickel oxide (NiO) nanopowders through chromium, iron, cobalt, copper, and zinc doping to enhance optoelectronic applications. In this regard, the preparation of pristine NiO and Ni × O (X = Cr, Fe, Co, Cu, and Zn) powders was successfully achieved through the co-precipitation method. The X-ray powder diffraction was employed to examine the prepared powders' phase formation and crystal structure characteristics.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China. Electronic address:
Discovering a valid approach to achieve a novel and efficient water splitting catalyst is essential for the development of hydrogen energy technology. Herein, unique hollow-structured ruthenium (Ru)-doped nickel-cobalt oxide (Ru-NiO/CoO/NF) nanocube arrays are fabricated as high-efficiency bifunctional electrocatalysts for hydrogen evolution reaction (HER)/urea oxidation reaction (UOR) through combined electronic and vacancy engineering. The structural characterization and experimental results indicate that the doping of Ru can not only effectively modulate the electronic structure of Ru-NiO/CoO/NF, but also increase the content of oxygen vacancies in the structure of Ru-NiO/CoO/NF to stabilize the existence of oxygen vacancies during the catalytic process.
View Article and Find Full Text PDFSmall Methods
December 2024
Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China.
Modifying the redox properties of transition metals within layered cathode materials represents a pivotal approach in the pursuit of high-performance cathode materials. The recent research has revealed a novel finding: the introduction of Mg into LiNiCoMnO leads to a shift in the oxidation sequence of transition metals during lithium extraction, with Co supplanting Ni as the primary oxidized species during the initial stages of lithium extraction. This alteration in the lattice constants and volume, among other structural parameters, serves to mitigate lattice stress during the charging and discharging cycles.
View Article and Find Full Text PDFACS Catal
December 2024
Chemistry and Nanoscience Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States.
Ni-based catalysts with Co or Fe can potentially replace precious Ir-based catalysts for the rate-limiting oxygen evolution reaction (OER) in anion-exchange membrane (AEM) electrolyzers. In this study, density functional theory (DFT) calculations provide atomic- and electronic-level resolution on how the inclusion of Co or Fe can overcome the inactivity of NiO catalysts and even enable them to surpass IrO in activating key steps to the OER. Namely, NiO resists binding the key OH* intermediate and presents a high energetic barrier to forming the O*.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!