In recent years, targeted protein degradation (TPD) has emerged as a powerful therapeutic modality utilizing both heterobifunctional ligand-directed degraders (LDDs) and molecular glues (e.g., CELMoDs) to recruit E3 ligases for inducing polyubiquitination and subsequent proteasomal degradation of target proteins. The immunomodulatory drugs lenalidomide and pomalidomide bind to cereblon (CRBN), a substrate receptor of the CRL4A E3 ligase complex, to initiate degradation of neosubstrates critical for cell survival. Recently, nonlenalidomide or pomalidomide CRBN binders, known as alternate glutarimides, have gained popularity, offering potential degraders with varying physicochemical properties. Specifically, 3-substituted indazole derivatives have emerged as potent CRBN binders. We developed conditions for the direct cross-coupling of unprotected glutarimides with amines, streamlining the synthesis of alternative CRBN binders. This manuscript describes the rapid synthesis of 30 CRBN binders, their characterization as potential degraders and a cryo-EM structure of the CRBN/DDB1 with a representative compound ().

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11726386PMC
http://dx.doi.org/10.1021/acsmedchemlett.4c00462DOI Listing

Publication Analysis

Top Keywords

crbn binders
16
potential degraders
8
binders
5
crbn
5
development buchwald-hartwig
4
buchwald-hartwig amination
4
amination accelerated
4
accelerated library
4
library synthesis
4
synthesis cereblon
4

Similar Publications

Development of a Buchwald-Hartwig Amination for an Accelerated Library Synthesis of Cereblon Binders.

ACS Med Chem Lett

January 2025

Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States.

In recent years, targeted protein degradation (TPD) has emerged as a powerful therapeutic modality utilizing both heterobifunctional ligand-directed degraders (LDDs) and molecular glues (e.g., CELMoDs) to recruit E3 ligases for inducing polyubiquitination and subsequent proteasomal degradation of target proteins.

View Article and Find Full Text PDF

Selective Degradation of TEADs by a PROTAC Molecule Exhibited Robust Anticancer Efficacy In Vitro and In Vivo.

J Med Chem

January 2025

Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia Province 750004, China.

Genetic mutations in components of the Hippo pathway frequently lead to the aberrant activation of TEADs, which is often associated with cancer. Consequently, TEADs have been actively pursued as therapeutic targets for diseases driven by TEAD overactivation. In this study, we report two series of TEAD PROTACs based on CRBN binders and VHL binders.

View Article and Find Full Text PDF

Routes to molecular glue degrader discovery.

Trends Biochem Sci

January 2025

School of Life Science and Technology, ShanghaiTech University, 201210 Shanghai, China. Electronic address:

Molecular glue degraders (MGDs) represent a unique class of targeted protein degradation (TPD) modalities. By facilitating protein-protein interactions between E3 ubiquitin ligases and neo-substrates, MGDs offer a novel approach to target previously undruggable or insufficiently drugged disease-causing proteins. Here, we present an overview of recently reported MGDs, highlighting their diverse mechanisms, and we discuss mechanism-based strategies to discover new MGDs and neo-substrates.

View Article and Find Full Text PDF

An engineered cereblon optimized for high throughput screening and molecular glue discovery.

Cell Chem Biol

November 2024

Institute of Biochemistry II, Medical Faculty, Goethe-University, Frankfurt am Main and Buchmann Institute for Molecular Life Sciences, Frankfurt am Main, Germany; Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, 60439 Frankfurt am Main, Germany. Electronic address:

Article Synopsis
  • The study focuses on improving the understanding and identification of molecular glue substrates related to the E3 ligase receptor cereblon (CRBN), commonly used in clinical degraders.* -
  • Researchers engineered human CRBN constructs for efficient production in E. coli, achieving a balance between high binding activity and production ease.* -
  • The team developed an "Enamine focused IMiD library" for high-throughput screening, successfully identifying effective binders and laying the groundwork for future CRBN glue discoveries.*
View Article and Find Full Text PDF

Discovery of the first selective and potent PROTAC degrader for the pseudokinase TRIB2.

Eur J Med Chem

January 2025

International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MoE) of People's Republic of China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China. Electronic address:

Article Synopsis
  • Pseudokinase TRIB2 plays a significant role in cell regulation and is linked to cancer progression and therapy resistance, making it a potential target for treatment.
  • Researchers developed several TRIB2 degraders, notably compound 5k, which showed strong effectiveness in reducing TRIB2 levels in prostate cancer cells.
  • Compound 5k not only outperformed traditional TRIB2 binders in inhibiting cancer cell growth but also provides a valuable resource for studying the function of TRIB2 in cancer biology.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!