Standardizing decellularization protocols for optimized uterine tissue bioengineering.

Regen Ther

Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Kvinnokliniken, Blå stråket 6, 40530 Gothenburg, Sweden.

Published: March 2025

Bioengineering is applied in different areas, including women's infertility management. Among other approaches, decellularized tissues are being used to treat uterine disorders causing infertility. Biomaterials made from decellularized tissue consist of tissue-specific extracellular matrix and, as acellular scaffolds, are thought to be immune inert. Hence, they are good grafting candidates to replace and regenerate excised damaged uterine tissue to cure infertility. However, decellularization approaches differ among species and research groups, posing challenges for comparison and standardization. The diversity in data reporting and studied properties of the resulting decellularized scaffold make it even more difficult, especially when the ultimate goal is clinical translation. Thus, this review aims to critically assess whole uterus decellularization studies, extracting and comparing their main results and conclusions. After carefully evaluating the reviewed studies, we noticed that the vast majority base the uterus decellularization success and resulting scaffold efficacy on the DNA removal efficacy, while other crucial aspects, including the extracellular matrix integrity or immunogenicity, are underestimated. Thus, this review further proposes practical points for what should be considered and how results can be reported in studies involving whole uterus decellularization to facilitate comparison between studies and translational progress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11731971PMC
http://dx.doi.org/10.1016/j.reth.2024.12.011DOI Listing

Publication Analysis

Top Keywords

uterus decellularization
12
uterine tissue
8
extracellular matrix
8
standardizing decellularization
4
decellularization protocols
4
protocols optimized
4
optimized uterine
4
tissue bioengineering
4
bioengineering bioengineering
4
bioengineering applied
4

Similar Publications

Background: Infertility is a special reproductive health defect. For women, congenital uterine malformations, extensive adhesions in the uterine cavity, and hysterectomy are associated with infertility. Uterine transplantation is technically feasible, but its clinical application and development are limited by donor shortages and immune rejection.

View Article and Find Full Text PDF

Standardizing decellularization protocols for optimized uterine tissue bioengineering.

Regen Ther

March 2025

Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Kvinnokliniken, Blå stråket 6, 40530 Gothenburg, Sweden.

Bioengineering is applied in different areas, including women's infertility management. Among other approaches, decellularized tissues are being used to treat uterine disorders causing infertility. Biomaterials made from decellularized tissue consist of tissue-specific extracellular matrix and, as acellular scaffolds, are thought to be immune inert.

View Article and Find Full Text PDF

Transplantation of decellularized uterus tissue showed promise in supporting regeneration following uterine injury in animal models, suggesting an alternative to complete uterus transplantation for uterine factor infertility treatment. However, most animal studies utilized small grafts, limiting their clinical relevance. Hence, we used larger grafts (20 × 10 mm), equivalent to nearly one uterine horn in rats, to better evaluate the bioengineering challenges associated with structural support, revascularization, and tissue regeneration.

View Article and Find Full Text PDF

Toward human uterus tissue engineering: Uterine decellularization in a non-human primate species.

Acta Obstet Gynecol Scand

December 2024

Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.

Introduction: Uterus bioengineering offers a potential treatment option for women with uterine factor infertility and for mitigating the risk of uterine rupture associated with women with defective uterine tissue. Decellularized uterine tissue scaffolds proved promising in further in vivo experiments in rodent and domestic species animal models. Variations in the extracellular matrix composition among different species and adaptations of the decellularization protocols make it difficult to compare the results between studies.

View Article and Find Full Text PDF
Article Synopsis
  • This study focuses on decellularized uterine extracellular matrix as a key biomaterial for uterine tissue regeneration and transplantation, investigating different decellularization protocols for porcine uterine tissues.
  • Six distinct protocols involving various chemicals, including sodium dodecyl sulfate and DNase I, were tested for their effectiveness in DNA removal and preservation of bioactive molecules.
  • Results showed that one specific combination (0.1% SDS + 1% Triton X-100 with agitation) was most effective for DNA removal, with DNase I significantly improving the process by reducing cell debris, which could enhance future uterine transplantation efforts.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!