Niemann-Pick disease (NPD) is an autosomal recessive disease caused by deficient lysosomal enzyme or faulty cholesterol transport. A 9-year-old male patient presented with 6 years of abdominal swelling, previously treated as tuberculosis. He exhibited hepatosplenomegaly, delayed growth, and pancytopenia. Imaging revealed hepatosplenomegaly, a focal splenic infarct, diffuse interstitial septal thickening, and ground glass opacities in the lungs, raising suspicion of a storage disease. Further biopsies, of the bone marrow and liver, revealed the presence of foam cells with abundant multivacuolated cytoplasm and central round nuclei, suggesting NPD. Genetic testing and specific enzyme activity tests are unavailable in our setting. This case highlights the diagnostic challenges of rare disease in resource-limited settings, often mistaken for more common conditions like tuberculosis and lymphoma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11731216PMC
http://dx.doi.org/10.1016/j.radcr.2024.11.021DOI Listing

Publication Analysis

Top Keywords

niemann-pick disease
8
disease visceral
4
visceral pulmonary
4
pulmonary involvement
4
involvement resource
4
resource limited
4
limited setting
4
setting rare
4
rare case
4
case report
4

Similar Publications

Niemann-Pick disease (NPD) is an autosomal recessive disease caused by deficient lysosomal enzyme or faulty cholesterol transport. A 9-year-old male patient presented with 6 years of abdominal swelling, previously treated as tuberculosis. He exhibited hepatosplenomegaly, delayed growth, and pancytopenia.

View Article and Find Full Text PDF

Clinical manifestations and molecular genetics of seven patients with Niemann-Pick type-C: a case series with a novel variant.

J Pediatr Endocrinol Metab

January 2025

Department of Pediatric Metabolism and Ankara University Rare Diseases Application and Research Center, Ankara University Faculty of Medicine, Ankara, Türkiye.

Objectives: Niemann-Pick type C (NPC) is a rare, autosomal recessive, neurodegenerative disorder caused by biallelic pathogenic variants in the or genes, leading to lysosomal lipid accumulation. NPC has an incidence of 1 in 100,000 live births and presents with a wide range of symptoms affecting visceral organs and the central nervous system. We aim to describe the diverse clinical presentations of NPC through case studies.

View Article and Find Full Text PDF

The multiple facets of Rab proteins modulating the cellular distribution of cholesterol from the late endosomal compartment.

Biochim Biophys Acta Mol Cell Res

January 2025

School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia. Electronic address:

Cholesterol is an essential lipid that ensures the functional integrity of mammalian cells. Most cells acquire cholesterol via endocytosis of low-density lipoproteins (LDL). Upon reaching late endosomes/lysosomes (LE/Lys), incoming ligands, including LDL-derived cholesterol, are distributed to other organelles.

View Article and Find Full Text PDF

Reply to "Levacetylleucine a game changer for Niemann-Pick disease type-C".

Brain Dev

January 2025

Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan; Department of Pharmaceutical Packaging Technology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.

View Article and Find Full Text PDF

NPC1 controls TGFBR1 stability in a cholesterol transport-independent manner and promotes hepatocellular carcinoma progression.

Nat Commun

January 2025

State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China.

Niemann-Pick disease type C protein 1 (NPC1), classically associated with cholesterol transport and viral entry, has an emerging role in cancer biology. Here, we demonstrate that knockout of Npc1 in hepatocytes attenuates hepatocellular carcinoma (HCC) progression in both DEN (diethylnitrosamine)-CCl induced and MYC-driven HCC mouse models. Mechanistically, NPC1 significantly promotes HCC progression by modulating the TGF-β pathway, independent of its traditional role in cholesterol transport.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!