This study aimed to employ a multi-omics method to identify key compounds contributing to the sensory flavour of mutton and to investigate the internal correlation between volatile metabolites and lipids in Cashmere goats and Tan sheep. The results demonstrate that the electronic nose can effectively and quickly distinguish goats and sheep meat. A total of 18 volatile metabolites and 314 lipids were identified as significant contributors to the flavour difference between goats and sheep meat, as determined by HS-SPME-GC-MS and lipidomic respectively. Specifically, TG(18:1/20:4/20:4), TG(18:1/18:2/20:4), TG(18:1/18:1/20:4), DG(18:0/20:4), and dodecanoic acid influence flavour by participating in key KEGG pathways such as the "fat digestion and absorption", "cholesterol metabolism" and "lipid and atherosclerosis". This study lays the groundwork for understanding the sources and mechanisms of mutton flavour compounds, providing valuable insights to support the growth and development of the mutton industry.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11729682 | PMC |
http://dx.doi.org/10.1016/j.fochx.2024.102042 | DOI Listing |
Food Chem X
January 2025
Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
This study aimed to employ a multi-omics method to identify key compounds contributing to the sensory flavour of mutton and to investigate the internal correlation between volatile metabolites and lipids in Cashmere goats and Tan sheep. The results demonstrate that the electronic nose can effectively and quickly distinguish goats and sheep meat. A total of 18 volatile metabolites and 314 lipids were identified as significant contributors to the flavour difference between goats and sheep meat, as determined by HS-SPME-GC-MS and lipidomic respectively.
View Article and Find Full Text PDFBMC Genomics
January 2025
College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China.
Background: Identifying markers or genes crucial for growth traits in Zhongwei goats is pivotal for breeding. Pinpointing genetic factors linked to body size gain enhances breeding efficiency and economic value. In this study, we used the MGISEQ-T7 platform to re-sequence 240 Zhongwei goats (133 male; 107 female) belonging to 5 metrics of growth traits at different growth stages (40 days and 6 months, here in after referred to as 40d and 6 m), namely, Body Weight (BW), Body Height (BH), Body Length (BL), Chest Circumference (CC), Tube Circumference (TC) were examined.
View Article and Find Full Text PDFBMC Vet Res
January 2025
Theriogenology Department, Faculty of Veterinary Medicine, New-Valley University, New Valley, 725211, Egypt.
Background: Saidi sheep are one of the most important farm animals in Upper Egypt, particularly in the Assiut governorate. Since they can provide meat, milk, fiber, and skins from low-quality roughages, sheep are among the most economically valuable animals bred for food in Egypt. Regarding breeding, relatively little is known about the Saidi breed.
View Article and Find Full Text PDFVet Med Sci
January 2025
Department of Animal Breeding and Husbandry, Istanbul University-Cerrahpasa, Istanbul, Türkiye.
Background: Obtaining information about the growth rates of animals' organs and tissues can help understand their meat production potential and determine the ideal slaughter weight (SW).
Objectives: This study aimed to determine the effects of production system and SW on the allometric growth of the non-carcass components, carcass cuts, and hind limb tissues of Kivircik lambs.
Methods: A total of 54 single-born male lambs were randomly allocated into production systems (concentrate- and pasture-based) and SW groups: 25-26 kg (LOW), 30-31 kg (MEDIUM), and 35-36 kg (HIGH).
Vet Res Commun
January 2025
Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China.
Colostrum, the initial mammary secretion produced by various mammals following birth, is a conduit for maternal immunity transfer in diverse mammalian species. Concurrently, many cellular processes are occurring in the neonatal small intestine to prepare it to receive molecular signals from a superfood essential for the neonate's health and development. During the prepartum colostrum secretion, the newborn intestine undergoes transient alterations in the intestinal barrier, primarily regulating immunoglobulin absorption.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!