Functional magnetic resonance imaging (fMRI) has emerged as an essential tool for exploring human brain function. Submillimeter fMRI, in particular, has emerged as a tool to study mesoscopic computations. The inherently low signal-to-noise ratio (SNR) at submillimeter resolutions warrants the use of denoising approaches tailored at reducing thermal noise-the dominant contributing noise component in high-resolution fMRI. NOise Reduction with DIstribution Corrected Principal Component Analysis (NORDIC PCA) is one of such approaches, and has been benchmarked against other approaches in several applications. Here, we investigate the effects that two versions of NORDIC denoising have on auditory submillimeter data. While investigating auditory functional responses poses unique challenges, we anticipated NORDIC to have a positive impact on the data on the basis of previous applications. Our results show that NORDIC denoising improves the detection sensitivity and the reliability of estimates in submillimeter auditory fMRI data. These effects can be explained by the reduction of the noise-induced signal variability. However, we did observe a reduction in the average response amplitude (percent signal change) within regions of interest, which may suggest that a portion of the signal of interest, which could not be distinguished from general i.i.d. noise, was also removed. We conclude that, while evaluating the effects of the signal reduction induced by NORDIC may be necessary for each application, using NORDIC in high-resolution auditory fMRI studies may be advantageous because of the large reduction in variability of the estimated responses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11726685 | PMC |
http://dx.doi.org/10.1162/imag_a_00270 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!