Muscle Fiber-Inspired High-Performance Strain Sensors for Motion Recognition and Control.

Langmuir

Henan Province Engineering Technology Research Center of MEMS Manufacturing and Applications, School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China.

Published: January 2025

The rapid development of wearable technology, flexible electronics, and human-machine interaction has brought about revolutionary changes to the fields of motion analysis and physiological monitoring. Sensors for detecting human motion and physiological signals have become a hot topic of current research. Inspired by the muscle fiber structure, this paper proposed a highly stable strain sensor that was composed of stretchable Spandex fibers (SPF), multiwalled carbon nanotubes (MWCNTs), and silicone rubber (Ecoflex). This sensor adopted an immersion coating process in which MWCNTs were conformally deposited on SPF, and Ecoflex was filled into the fiber interstices, completing the encapsulation and filling of the SPF to construct a stable three-dimensional conductive network. Thanks to the filling of Ecoflex, contact between conductive fibers during the stretching process was avoided, resulting in a significant change in the resistance. The sensitivity of the sensor reached 54.84, which is 10 times higher than before the Ecoflex filling with a stretchable strain range of up to 70%. The encapsulation of Ecoflex also prevented the detachment of MWCNTs on the fibers during stretching, improving the mechanical stability. The sensor can be easily attached to the surface of human skin to rapidly monitor various human motion signals. Furthermore, the sensor was related to the manipulator through wireless Bluetooth to realize the intelligent control of the manipulator. This work not only provided a more precise data monitoring method for medical and motion analysis fields but also offered an innovative solution for manipulator control.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.4c04687DOI Listing

Publication Analysis

Top Keywords

motion analysis
8
human motion
8
fibers stretching
8
motion
5
sensor
5
ecoflex
5
muscle fiber-inspired
4
fiber-inspired high-performance
4
high-performance strain
4
strain sensors
4

Similar Publications

Finite element modeling of clavicle fracture fixations: a systematic scoping review.

Med Biol Eng Comput

January 2025

Department of Orthopaedics, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China.

Finite element analysis has become indispensable for biomechanical research on clavicle fractures. This review summarized evidence regarding configurations and applications of finite element analysis in clavicle fracture fixation. Seventeen articles involving 22 clavicles were synthesized from CINAHL, Embase, IEEE Xplore, PubMed, Scopus, and Web of Science databases.

View Article and Find Full Text PDF

Comparison of different treatment positions of nerve slider technique for patients with low back pain: a randomized control trial.

Eur J Phys Rehabil Med

January 2025

Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, European University of Lefke, Mersin, Türkiye.

Background: Low back pain (LBP) accompanied by sciatica is a widespread musculoskeletal issue with multifactorial etiology, impacting individuals across various demographics. Conservative treatments, notably physiotherapy, are key in managing LBP with sciatica, with neural mobilization techniques emerging as beneficial adjuncts.

Aim: This research aims to assess the effectiveness of utilizing the sciatic slider technique (SST) in both supine and slump positions, compared to conventional physiotherapy alone, in alleviating pain severity, improving lumbar flexibility, lumbar lordosis, lower limb muscle strength, and functional ability in patients with LBP associated with sciatica.

View Article and Find Full Text PDF

Exploration of the dynamics of otic capsule and intracochlear pressure: Numerical insights with experimental validation.

J Acoust Soc Am

January 2025

Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland.

The otic capsule and surrounding temporal bone exhibit complex 3D motion influenced by frequency and location of the bone conduction stimulus. The resultant correlation with the intracochlear pressure is not sufficiently understood, thus is the focus of this study, both experimentally and numerically. Experiments were conducted on six temporal bones from three cadaver heads, with BC hearing aid stimulation applied at the mastoid and classical BAHA locations across 0.

View Article and Find Full Text PDF

Introduction: Wrist-worn accelerometers can capture stepping behavior passively, continuously, and remotely. Methods utilizing peak detection, threshold crossing, and frequency analysis have been used to detect steps from wrist-worn accelerometer data, but it remains unclear how different approaches perform across a range of walking speeds and free-living activities. In this study, we evaluated the performance of four open-source methods for deriving step counts from wrist-worn accelerometry data, when applied to data from a range of structured locomotion and free-living activities.

View Article and Find Full Text PDF

The Laser Interferometer Space Antenna (LISA) mission is designed to detect space gravitational wave sources in the millihertz band. A critical factor in the success of this mission is the residual acceleration noise metric of the internal test mass (TM) within the ultra-precise inertial sensors. Existing studies indicate that the coupling effects of residual gas and temperature gradient fluctuations significantly influence this metric, primarily manifesting as the radiometer effect and the outgassing effect.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!