Robust analysis of diel activity patterns.

J Anim Ecol

School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK.

Published: January 2025

Research Highlight: Iannarilli, F., Gerber, B. D., Erb, J., & Fieberg, J. R. (2024). A 'how-to' guide for estimating animal diel activity using hierarchical models. Journal of Animal Ecology, https://doi.org/10.1111/1365-2656.14213. Diel activity patterns are ubiquitous in living organisms and have received considerable research attention with advances in the collection of time-stamped data and the recognition that organisms may respond to global change via behaviour timing. Iannarilli et al. (2024) provide a roadmap for analysing diel activity patterns with hierarchical models, specifically trigonometric generalized linear mixed-effect models and cyclic cubic spline generalized additive models. These methods are improvements over kernel density estimators, which for nearly two decades have been the status quo for analysing activity patterns. Kernel density estimators have several drawbacks; most notably, data are typically aggregated (e.g. across locations) to achieve sufficient sample sizes, and covariates cannot be incorporated to quantify the influence of environmental variables on activity timing. Iannarilli et al. (2024) also provide a comprehensive tutorial which demonstrates how to format data, fit models, and interpret model predictions. We believe that hierarchical models will become indispensable tools for activity-timing research and envision the development of many extensions to the approaches described by Iannarilli et al. (2024).

Download full-text PDF

Source
http://dx.doi.org/10.1111/1365-2656.14235DOI Listing

Publication Analysis

Top Keywords

diel activity
16
activity patterns
16
hierarchical models
12
iannarilli et al
12
et al 2024
12
timing iannarilli
8
2024 provide
8
kernel density
8
density estimators
8
activity
6

Similar Publications

Physiological effects of suspended sediments on marine fish across habitat, development, and behavioral factors.

Mar Pollut Bull

January 2025

School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea; Center for Convergence Coastal Research, Seoul National University, Siheung-si, Gyeonggi-do 15011, Republic of Korea. Electronic address:

This study evaluated the physiological responses of four marine fish species (Lateolabrax japonicus, Sebastes schlegelii, Platichthys stellatus, and Paralichthys olivaceus) to suspended sediments (SS) generated by marine sand mining. Using oxygen consumption rate (OCR), osmolality, and mortality as endpoints, the effects of SS concentrations ranging from 0 to 10,000 mg L were assessed. L.

View Article and Find Full Text PDF

Interspecific interactions are important drivers of population dynamics and species distribution. These relationships can increase niche partitioning between sympatric species, which can differentiate space and time use or modify their feeding strategies. Roe deer and red deer are two of the most widespread ungulate species in Europe and show spatial and dietary overlap.

View Article and Find Full Text PDF

NTRC mediates the coupling of chloroplast redox rhythm with nuclear circadian clock in plant cells.

Mol Plant

January 2025

Division of Applied Life Sciences (BK21(+)), Plant Biological Rhythm Research Center and PMBBRC, Gyeongsang National University, Jinju-52828, Korea. Electronic address:

The intricate interplay between cellular circadian rhythms, primarily manifested in the chloroplast redox oscillations-characterized by diel hyperoxidation/reduction cycles of 2-Cys Peroxiredoxins-and the nuclear transcription/translation feedback loop (TTFL) machinery within plant cells, demonstrates a remarkable temporal coherence. However, the molecular mechanisms underlying the integration of these circadian rhythms remain elusive. Here, we elucidate that the chloroplast redox protein, NADPH-dependent thioredoxin reductase type-C (NTRC), modulates the integration of the chloroplast redox rhythms and nuclear circadian clocks by regulating intracellular levels of reactive oxygen species and sucrose.

View Article and Find Full Text PDF

Robust analysis of diel activity patterns.

J Anim Ecol

January 2025

School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK.

Research Highlight: Iannarilli, F., Gerber, B. D.

View Article and Find Full Text PDF

Patients with knee osteoarthritis (KOA) often have impaired muscle function of the weight-bearing muscles, particularly in the knee and hip joints. This can lead to a significant loss of strength and power and may play a role in the perceived instability of the knee joint. The purpose of this study was to compare the maximum isometric strength of the hip abductor and knee extensor muscles between patients with KOA with and without perceived instability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!