CuI cubane-type secondary building units are reticulated with a piperazine linker at room temperature to crystallize the metal-organic frameworks (MOFs) CuI(Pip) in a non-centrosymmetric 622 space group. For the first time, cubane cluster type MOF's strong piezoelectric nature has been studied by switching spectroscopy piezo force microscopy (SS-PFM) and piezo force microscopy (PFM) mapping of the crystal, with piezoelectric constant () ∼52.33 pm V, highlighting its potential for mechanical energy harvesting processes.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4cc05965dDOI Listing

Publication Analysis

Top Keywords

piezo force
8
force microscopy
8
inducing piezoelectric
4
piezoelectric behavior
4
behavior copper
4
copper iodide
4
iodide cubane
4
cubane cluster-based
4
cluster-based metal-organic
4
metal-organic framework
4

Similar Publications

CuI cubane-type secondary building units are reticulated with a piperazine linker at room temperature to crystallize the metal-organic frameworks (MOFs) CuI(Pip) in a non-centrosymmetric 622 space group. For the first time, cubane cluster type MOF's strong piezoelectric nature has been studied by switching spectroscopy piezo force microscopy (SS-PFM) and piezo force microscopy (PFM) mapping of the crystal, with piezoelectric constant () ∼52.33 pm V, highlighting its potential for mechanical energy harvesting processes.

View Article and Find Full Text PDF

Proximity ferroelectricity in wurtzite heterostructures.

Nature

January 2025

Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, USA.

Proximity ferroelectricity is an interface-associated phenomenon in electric-field-driven polarization reversal in a non-ferroelectric polar material induced by one or more adjacent ferroelectric materials. Here we report proximity ferroelectricity in wurtzite ferroelectric heterostructures. In the present case, the non-ferroelectric layers are AlN and ZnO, whereas the ferroelectric layers are AlBN, AlScN and ZnMgO.

View Article and Find Full Text PDF

Mechanical force orchestrates a myriad of cellular events including inhibition of axon regeneration, by locally activating the mechanosensitive ion channel Piezo enriched at the injured axon tip. However, the cellular mechanics underlying Piezo localization and function remains poorly characterized. We show that the RNA repair/splicing enzyme Rtca acts upstream of Piezo to modulate its expression and transport/targeting to the plasma membrane via Rab10 GTPase, whose expression also relies on Rtca.

View Article and Find Full Text PDF

All-polymer piezo-ionic-electric electronics.

Nat Commun

December 2024

Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.

Piezoelectric electronics possess great potential in flexible sensing and energy harvesting applications. However, they suffer from low electromechanical performance in all-organic piezoelectric systems due to the disordered and weakly-polarized interfaces. Here, we demonstrated an all-polymer piezo-ionic-electric electronics with PVDF/Nafion/PVDF (polyvinylidene difluoride) sandwich structure and regularized ion-electron interfaces.

View Article and Find Full Text PDF

Advanced oxidation processes employing peroxymonosulfate (PMS) show significant promise for wastewater treatment. However, PMS activation typically relies on energy- and chemically intensive techniques due to its relatively low reactivity. Hence, the exploration of novel and energy-efficient approaches, such as the piezoelectric effect, for PMS activation is of paramount importance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!