Smart luminescent materials have drawn a significant attention owing to their unique optical properties and versatility in sensor applications. These materials, encompassing a broad spectrum of organic, inorganic, and hybrid systems including quantum dots, organic dyes, and metal-organic frameworks (MOFs), offer tunable emission characteristics that can be engineered at the molecular or nanoscale level to respond to specific stimuli, such as temperature, pH, and chemical presence. Recent advancements have been driven by the integration of nanotechnology, which enhances the sensitivity and selectivity of luminescent materials in sensor platforms. The development of photoluminescent and electrochemiluminescent sensors, for instance, has enabled real-time detection and quantification of target analytes with high accuracy. Additionally, the incorporation of these materials into portable, user-friendly devices, such as smartphone-based sensors, broadens their applicability and accessibility. Despite their potential, challenges remain in optimizing the stability, efficiency, and biocompatibility of these materials under different conditions. This review provides a comprehensive overview of the fundamental principles of smart luminescent materials, discusses recent innovations in their use for sensor applications, and explores future directions aimed at overcoming current limitations and expanding their capabilities in meeting the growing demand for rapid and cost-effective sensing solutions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/asia.202401328 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!