An effective long-term nitrogen dioxide (NO) monitoring at trace concentration is critical for protecting the ecological environment and public health. Tellurium (Te), as a recently discovered 2D elemental material, is promising for NO detection because of its suitable band structure for gas adsorption and charge mobility. However, the high activity of Te leads to poor stability in ambient and harsh conditions, limiting its application as a gas-sensitive material. Herein, 2D single-elemental Te@Se heterostructures with a core-shell structure are prepared using a solvothermal method. The Te@Se heterostructures demonstrate an extremely high response of 622% to 1 ppm of NO at room temperature, with ultrafast response/recovery times of 10 s/30 s. Moreover, the core-shell heterostructures exhibit excellent stability in NO sensing performance over a period of 90 days. The success relies on the ultrathin Se shell with a thickness of 4-6 nm on Te, which enables the efficient redistribution and transport of interfacial charges. These findings reveal the potential of single-element core-shell heterojunctions to achieve high-performance gas sensing, paving the way for advancements in NO detection materials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acssensors.4c02411DOI Listing

Publication Analysis

Top Keywords

core-shell heterostructures
8
shell thickness
8
te@se heterostructures
8
te@se core-shell
4
heterostructures
4
heterostructures tunable
4
tunable shell
4
thickness ultra-stable
4
ultra-stable detection
4
detection effective
4

Similar Publications

A photodetector for red and green with balanced negative and positive photocurrent for imaging is realized.

Sci Rep

January 2025

Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, People's Republic of China.

A dual-polarity, photovoltaic photodetector for red-green dual-wavelength detection is demonstrated, operating in the self-powered mode. It is based on a core-shell n-InGaN nanowire/p-CuO heterostructure with inner upward energy band bending and near surface downward energy band bending. This produces negative photocurrent for red light illumination and positive photocurrent for green light illumination.

View Article and Find Full Text PDF

We propose a temperature-dependent optimization procedure for the second-nearest neighbor (2NN) * tight-binding (TB) theory parameters to calculate the effects of strain, structure dimensions, and alloy composition on the band structure of heterostructure spherical core/shell quantum dots (QDs). We integrate the thermoelastic theory of solids with the 2NN * TB theory to calculate the strain, core and shell dimensions, and composition effects on the band structure of binary/ternary CdSe/Cd(Zn)S and ZnSe/Zn(Cd)S QDs at any temperature. We show that the 2NN * TB theory with optimized parameters greatly improves the prediction of the energy dispersion curve at and in the vicinity of L and X symmetry points.

View Article and Find Full Text PDF

The sensitive detection of NO2 is crucial for environmental monitoring and improving quality of life. Herein, a ZnO@MoO3 core-shell nanocomposite was fabricated via a simple stepwise solution self-assembly and heat-treatment process. Remarkably, the ZnO@MoO3 sensor exhibited a high response value of 5.

View Article and Find Full Text PDF

A safe and robust in-situ polymerized cementitious electrolyte coupled with NiCoS@CuCoS electrode for superior load-bearing integrated electrochemical capacitor.

J Colloid Interface Sci

January 2025

Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, School of Materials Science and Engineering, Tongji University, Shanghai 201804 PR China. Electronic address:

Load bearing/energy storage integrated devices (LEIDs) featuring cementitious electrolytes have become ideal for large-scale energy storage. Nevertheless, the progression of LEIDs is still in its nascent phase and considerable endeavors concerning cementitious electrolytes and electrode materials are necessary to further boost the charge storage ability. Here, we propose a facile synchronous reaction method for preparing sodium acrylate (SA)-based in-situ polymerized cementitious electrolyte.

View Article and Find Full Text PDF

The SnO@BiO core-shell heterojunction structure was designed and synthesized via a hydrothermal method, and the structure and morphology of the synthesized samples were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). Based on the conclusions from XRD and SEM, it can be observed that as the hydrothermal temperature increases, the content of BiO coated on the surface of SnO spheres gradually increases, and the diameter of BiO nanoparticles also increases. At a hydrothermal temperature of 160 °C, the SnO spheres are fully coated with BiO nanoparticles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!