The utilization of liquid crystals (LC) as materials has enabled the enlargement of lenses with the potential to alter their focus. Tunable LC lenses with adjustable focus are essential for optical imaging, sensing, and detection devices. This technology offers many benefits, such as the ability to adjust focus, operate with low power, and be easily made. Its compact structure and stability are also advantages. Adding polymer additives to pure LC systems enhances their capabilities and provides more flexibility and functionality. This review explores ways to enhance the performance of tunable LC lenses, including image quality, speed, optical power, and device fabrication. Especially, enhancements include a switchable focus range, wider viewing angles, and a flexible lens. The challenges in fabricating and controlling LC methods have significant implications for many potential applications. The discovery of new LC materials and lens designs will further highlight these implications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.202401113DOI Listing

Publication Analysis

Top Keywords

tunable lenses
8
tunable focusing
4
focusing liquid
4
liquid crystal
4
lenses
4
crystal lenses
4
lenses challenges
4
challenges opportunities
4
opportunities utilization
4
utilization liquid
4

Similar Publications

The utilization of liquid crystals (LC) as materials has enabled the enlargement of lenses with the potential to alter their focus. Tunable LC lenses with adjustable focus are essential for optical imaging, sensing, and detection devices. This technology offers many benefits, such as the ability to adjust focus, operate with low power, and be easily made.

View Article and Find Full Text PDF

A Review of Cascaded Metasurfaces for Advanced Integrated Devices.

Micromachines (Basel)

December 2024

State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin 300072, China.

This paper reviews the field of cascaded metasurfaces, which are advanced optical devices formed by stacking or serially arranging multiple metasurface layers. These structures leverage near-field and far-field electromagnetic (EM) coupling mechanisms to enhance functionalities beyond single-layer metasurfaces. This review comprehensively discusses the physical principles, design methodologies, and applications of cascaded metasurfaces, focusing on both static and dynamic configurations.

View Article and Find Full Text PDF
Article Synopsis
  • Lubricant-mediated surfaces face challenges like lubricant loss and poor clarity for antifouling purposes.
  • Inspired by globefish skin, slippery Liquid-Like Surfaces (LLSs) use cyclodextrin-eugenol complexes and flexible silicone chains to effectively kill attached organisms and prevent fouling.
  • LLSs show excellent antifouling and mechanical properties while maintaining transparency in various water environments, lasting up to 90 days on coated lenses in seawater.
View Article and Find Full Text PDF

[Deep brain imaging by using GRIN lens].

Nihon Yakurigaku Zasshi

January 2025

Endowed Department of Cognitive Function and Pathology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences.

Elucidating the neural mechanisms governing changes in individual animal behavior is a key goal in neuroscience. Such research has important implications for behavioral pharmacology and could lead to the development of treatments for psychiatric and neurological disorders. Given that the brain likely represents vast amounts of information through the combined activity of multiple neurons, studying these mechanisms requires the simultaneous recording of many neurons.

View Article and Find Full Text PDF

Aim: To investigate the biocompatibility and bacterial adhesion properties of light responsive materials (LRM) and analyze the feasibility and biosafety of employing LRM in the preparation of accommodative intraocular lenses (AIOLs).

Methods: Employing fundamental experimental research techniques, LRM with human lens epithelial cells (hLECs) and human retinal pigment epithelium cells (ARPE-19 cells) were co-cultured. Commercially available intraocular lenses (IOLs) were used as controls to perform cell counting kit-8 (CCK-8), cell staining under varying light intensities, cell adhesion and bacterial adhesion experiments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!