Previous research on resting muscles has shown that inter-pulse interval (IPI) duration influences transcranial magnetic stimulation (TMS) responses, which can introduce serious confounding variables into investigations if not accounted for. However, it is far less clear how IPI influences TMS responses in active muscles. Thus, the purpose of this study was to examine the relationship between IPI and corticospinal excitability during submaximal isometric elbow flexion. Corticospinal excitability to the biceps and triceps brachii was measured using motor evoked potentials (MEPs) elicited via TMS. Stimulation intensity was set to 120% of the biceps brachii's active motor threshold while participants produced 10% of their biceps' maximal muscle activity. TMS was delivered as separate trains of five stimulations, with experimental conditions differing between IPIs of 4, 6, 8, 10, 12 or 14 s. Results demonstrated that IPI had no influence on MEP amplitudes for either the biceps or triceps. However, when MEP amplitudes were expressed as a unitless ratio to pre-stimulus muscle activity, a main effect of time was found for the biceps; MEP amplitudes progressively decreased with successive stimulations (MEP 1:32.8 ± 5.9; MEP 5:27.7 ± 4.3, p < 0.05). These results suggest that IPI is unlikely to represent a confounding variable in TMS studies utilizing active contractions. However, studies looking to compare the amplitudes of single MEPs over time should be aware of the possibility that amplitudes may decrease with continuous stimulation. Future research should seek to examine even longer IPIs and explore the influence of higher stimulation intensities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/ejn.16671 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!