Background: Piperine, a secondary metabolite, affects the antihyperlipidemic effect of Ezetimibe (EZ). Hyperlipidemia is one of the independent risk factors for cardiovascular disorders such as atherosclerosis. Antihyperlipidemic drugs are essential for reducing cardiovascular events and patient mortality. Our study aimed to improve the solubility of EZ, a lipid-lowering drug that belongs to BCS II and has low solubility. Piperine, a bioenhancer, can increase the bioavailability of other pharmaceuticals without modifying their fundamental characteristics or enhancing their efficacy. The objective of this study was to increase the bioavailability of EZ while also improving its potency and reducing its toxicity by using piperine as a bioenhancer. Therefore, rats were given piperine combined with EZ, and their antihyperlipidemic activity was assessed while fed a high-fat diet.

Method: The in vivo antihyperlipidemic effect of EZ with piperine was assessed at doses of 10 and 5-20 mg/kg b.w. The evaluation was conducted using propylthiouracil-induced and triton X-100-induced hyperlipidemia in rats. Give 400 mg/kg body weight of propylthiouracil along with piperine. Serum levels of total cholesterol (TC) (p < 0.01), triglycerides (TG) (p < 0.01), low-density lipoprotein (LDL) (p < 0.01), and very low-density lipoprotein (VLDL) (p < 0.01) all went up significantly. Additionally, it led to the induction of high-density lipoprotein (HDL) (p < 0.01). Administration of Triton X-100 via intraperitoneal injection at a single dose resulted in an elevation of lipid levels.

Results: Lower levels of high-density lipoprotein (LDL), total cholesterol (TC), triglycerides (TG), and very low-density lipoprotein (VLDL) were significantly reduced by EZ at 10 mg/kg b.w. and piperine at 20 mg/kg b.w., respectively (p < 0.01 and p < 0.05). Liver histology studies provided further evidence supporting the present findings. Areas of concentrated periportal lymphocytes and hepatocytes formed a cord pattern in rats with hyperlipidaemia. It seemed like the hepatocytes, periportal area, and centrilobular part of the liver were all normal in the group who had the treatment. An analysis of the EZ plasma drug concentration with time was carried out in a research. The medication's most effective concentration (Cmax) was determined to be within 4 h after delivery, and The quantified concentration of the active medication was detectable in the bloodstream for 24 h.

Conclusion: In combination with piperine, EZ has demonstrated significant antioxidant and antihyperlipidemic effects. This indicates that EZ could be further utilised for treating hyperlipidemia and atherosclerosis due to its potential to boost the bioavailability and oral absorption of the drug.

Download full-text PDF

Source
http://dx.doi.org/10.1186/s40360-025-00836-zDOI Listing

Publication Analysis

Top Keywords

piperine bioenhancer
8
increase bioavailability
8
piperine
7
characterization interactions
4
interactions piperine
4
piperine ezetimibe
4
ezetimibe anti-hyperlipidemic
4
anti-hyperlipidemic efficacy
4
efficacy biopharmaceutics
4
biopharmaceutics pharmacokinetics
4

Similar Publications

Background: Piperine, a secondary metabolite, affects the antihyperlipidemic effect of Ezetimibe (EZ). Hyperlipidemia is one of the independent risk factors for cardiovascular disorders such as atherosclerosis. Antihyperlipidemic drugs are essential for reducing cardiovascular events and patient mortality.

View Article and Find Full Text PDF

Formononetin (FNT) has limited application due to poor water solubility and substantial phase II metabolism. In the present study, we used phospholipid complex (PC) containing FNT and UDP-glucuronosyltransferase (UGT1A1) inhibitor piperine (PIP) to overcome FNT limitations. We characterized and compared both FNT-PC and FNT-PIP-PC complexes.

View Article and Find Full Text PDF

Anticancer drug discovery needs serious attention to overcome the high mortality rate caused by cancer. There are still many obstacles to treating this disease, such as the high cost of chemotherapeutic drugs, the resulting side effects from the drug, and the occurrence of multidrug resistance. Herbaceous plants are a reservoir of natural compounds that can be anticancer drugs with novel mechanisms of action.

View Article and Find Full Text PDF

Design and optimization of chitosan-coated solid lipid nanoparticles containing insulin for improved intestinal permeability using piperine.

Int J Biol Macromol

November 2024

Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra 440033, India; NanoBioSome Research Laboratory, Pardi, Bhandara Road, Nagpur, Maharashtra 440035, India. Electronic address:

The objective of this research was to optimize the composition and performance of chitosan-coated solid lipid nanoparticles carrying insulin (Ch-In-SLNs) and to assess the potential of piperine in enhancing the intestinal permeability of insulin from these SLNs in vitro. The SLNs were formulated from glyceryl behenate (GB), soya lecithin, and poloxamer® 407, and then coated with a combination of chitosan and piperine to facilitate insulin penetration across the gastrointestinal (GI) mucosa. A Box-Behnken Design (BBD) was utilized to optimize the Ch-In-SLNs formulations, with PDI, particle size, zeta potential, and association efficiency (AE) serving as the response variables.

View Article and Find Full Text PDF

Piperine Enhances Antimalarial Activity of Methyl Gallate and Palmatine Combination.

Acta Parasitol

June 2024

Department of Biochemistry, Faculty of Life Sciences, University of Ilorin, Ilorin, Nigeria.

Purpose: Artemisinin combination therapies, the first-line antimalarials in Nigeria, have reportedly suffered multiple failures in malaria treatment, hence the search for novel combination of other compounds. Methyl gallate and palmatine have been reported to exhibit antiplasmodial activities but the antimalarial activity of their combination has not been evaluated. Therefore, the evaluation of the combination of methyl gallate and palmatine for antimalarial activity in vitro and in vivo in the presence of piperine was carried out.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!