Machine learning and multi-omics in precision medicine for ME/CFS.

J Transl Med

Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3052, Australia.

Published: January 2025

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a complex and multifaceted disorder that defies simplistic characterisation. Traditional approaches to diagnosing and treating ME/CFS have often fallen short due to the condition's heterogeneity and the lack of validated biomarkers. The growing field of precision medicine offers a promising approach which focuses on the genetic and molecular underpinnings of individual patients. In this review, we explore how machine learning and multi-omics (genomics, transcriptomics, proteomics, and metabolomics) can transform precision medicine in ME/CFS research and healthcare. We provide an overview on machine learning concepts for analysing large-scale biological data, highlight key advancements in multi-omics biomarker discovery, data quality and integration strategies, while reflecting on ME/CFS case study examples. We also highlight several priorities, including the critical need for applying robust computational tools and collaborative data-sharing initiatives in the endeavour to unravel the biological intricacies of ME/CFS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11731168PMC
http://dx.doi.org/10.1186/s12967-024-05915-zDOI Listing

Publication Analysis

Top Keywords

machine learning
12
precision medicine
12
learning multi-omics
8
medicine me/cfs
8
me/cfs
6
multi-omics precision
4
me/cfs myalgic
4
myalgic encephalomyelitis/chronic
4
encephalomyelitis/chronic fatigue
4
fatigue syndrome
4

Similar Publications

Background: Kidney tumors, common in the urinary system, have widely varying survival rates post-surgery. Current prognostic methods rely on invasive biopsies, highlighting the need for non-invasive, accurate prediction models to assist in clinical decision-making.

Purpose: This study aimed to construct a K-means clustering algorithm enhanced by Transformer-based feature transformation to predict the overall survival rate of patients after kidney tumor resection and provide an interpretability analysis of the model to assist in clinical decision-making.

View Article and Find Full Text PDF

Rib pathology is uniquely difficult and time-consuming for radiologists to diagnose. AI can reduce radiologist workload and serve as a tool to improve accurate diagnosis. To date, no reviews have been performed synthesizing identification of rib fracture data on AI and its diagnostic performance on X-ray and CT scans of rib fractures and its comparison to physicians.

View Article and Find Full Text PDF

Effect of terahertz radiation on cells and cellular structures.

Front Optoelectron

January 2025

Institute of Physics, Saratov State University, Saratov, 410012, Russia.

The paper presents the results of modern research on the effects of electromagnetic terahertz radiation in the frequency range 0.5-100 THz at different levels of power density and exposure time on the viability of normal and cancer cells. As an accompanying tool for monitoring the effect of radiation on biological cells and tissues, spectroscopic research methods in the terahertz frequency range are described, and attention is focused on the possibility of using the spectra of interstitial water as a marker of pathological processes.

View Article and Find Full Text PDF

Cognitive resilience (CR) describes the phenomenon of individuals evading cognitive decline despite prominent Alzheimer's disease neuropathology. Operationalization and measurement of this latent construct is non-trivial as it cannot be directly observed. The residual approach has been widely applied to estimate CR, where the degree of resilience is estimated through a linear model's residuals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!