Background: The aim of this study was to investigate the role of miR-361-5p (a tumor suppressor) in regulating granulosa cell function by targeting SLC25A24, a key mitochondrial protein, to uncover potential therapeutic targets for diminished ovarian reserve (DOR).
Methods: This study included patients undergoing assisted reproductive technology treatment at our hospital. Granulosa cells were isolated from follicular fluid, and KGN cells were used for in vitro experiments. miR-361-5p and SLC25A24 expression levels were manipulated using miRNA mimics and inhibitors, and their effects on cell viability, apoptosis, and mitochondrial function were assessed. Techniques employed included qRT-PCR, Western blot analysis, ELISA, JC-1 staining, and dual-luciferase reporter assays. Key quantitative metrics included changes in mitochondrial DNA (mtDNA), ATP production, and reactive oxygen species (ROS) levels.
Results: miR-361-5p expression was significantly lower in DOR patients' granulosa cells compared to controls (P < 0.01). miR-361-5p inhibition markedly decreased KGN cells viability and increased apoptosis (P < 0.01), while miR-361-5p overexpression had the opposite effects (P < 0.01). SLC25A24 expression was inversely correlated with miR-361-5p levels, and its knockdown reversed the effects of miR-361-5p inhibition. Additionally, miR-361-5p modulation significantly affected mitochondrial function, with its overexpression reducing ROS levels and increasing ATP production (P < 0.01).
Conclusion: miR-361-5p plays a pivotal role in maintaining mitochondrial function and reducing KGN cells dysfunction by targeting SLC25A24. These findings offer new insights into the molecular mechanisms of DOR and highlight miR-361-5p as a potential therapeutic target to enhance ovarian reserve and improve fertility outcomes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10815-024-03349-6 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Department of Zoology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia.
In Vitro Cell Dev Biol Anim
January 2025
Department of Outpatient Service, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, Hunan, China.
The objective of this study is to explore how adipose-derived stem cells (ASCs) regulate mitochondrial structure and function and the impact of this regulation on slowing cellular senescence. HFF-1 cells were induced by HO to establish a cellular senescence model, and ASCs or Mdivi-1 (mitochondrial fission inhibitor) was added. MTT examined the cell proliferation; flow cytometry detected mitochondrial membrane potential as well as apoptosis and cell cycle; kit measured ATP production; ELISA analyzed the levels of interleukin-6 (IL-6), interleukin 1 beta (IL-1β), tumor necrosis factor alpha-like (TNF-α), glutathione (GSH), malondialdehyde (MDA), and superoxide dismutase (SOD); Western blotting and qRT-PCR detected the expression of protein and mRNA levels; and β-galactosidase staining observed the degree of cellular senescence.
View Article and Find Full Text PDFNat Rev Mol Cell Biol
January 2025
MitoCare Center, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA.
Activation of Ca channels in Ca stores in organelles and the plasma membrane generates cytoplasmic calcium ([Ca]) signals that control almost every aspect of cell function, including metabolism, vesicle fusion and contraction. Mitochondria have a high capacity for Ca uptake and chelation, alongside efficient Ca release mechanisms. Still, mitochondria do not store Ca in a prolonged manner under physiological conditions and lack the capacity to generate global [Ca] signals.
View Article and Find Full Text PDFSci Rep
January 2025
School of Sports and Health, Nanjing Sport Institute, Nanjing, China.
Mitochondrial function is crucial for hepatic lipid metabolism. Current research identifies two types of mitochondria based on their contact with lipid droplets: peridroplet mitochondria (PDM) and cytoplasmic mitochondria (CM). This work aimed to investigate the alterations of CM and PDM in metabolic dysfunction-associated steatotic liver disease (MASLD) induced by spontaneous type-2 diabetes mellitus (T2DM) in db/db mice.
View Article and Find Full Text PDFSci Rep
January 2025
Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #04-06 Immunos, Singapore, 138648, Singapore.
The tumor suppressor LKB1/STK11 plays important roles in regulating cellular metabolism and stress responses and its mutations are associated with various cancers. We recently identified a novel exon 1b within intron 1 of human LKB1/STK11, which generates an alternatively spliced, mitochondria-targeting LKB1 isoform important for regulating mitochondrial oxidative stress. Here we examined the formation of this novel exon 1b and uncovered its relatively late emergence during evolution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!