Doxorubicin (DOX) is an important drug used in the treatment of many malignancies. Unfortunately DOX causes various side effects, with cardiotoxicity being the most characteristic. Risk factors for DOX induced cardiotoxicity (DIC) include cumulative dose of DOX, preexisting cardiovascular diseases, dyslipidemia, diabetes, smoking, along with the use of other cardiotoxic agents. Development of DIC is associated with many pathological phenomena - increased oxidative stress, as well as upregulation of ferroptosis, apoptosis, necrosis, and autophagy. In DIC expression of many microRNAs is also deregulated. In order to avoid cardiotoxicity and still use DOX effectively DOX derivatives such as epirubicin were synthesized. Nowadays a new liposomal form of DOX (L-DOX) appeared as an alternative to conventional treatment with greatly reduced cardiotoxicity. L-DOX can be divided into two groups of substances - pegylated (PLD) with increased solubility and stability, and non-pegylated (NLPD). Many metaanalyses, clinical along with preclinical studies have shown L-DOX treatment is associated with a smaller decrease of left ventricular ejection fraction (LVEF) and other heart functions, but efficacy of this treatment is comparable to the use of convenctional DOX.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12012-024-09952-4 | DOI Listing |
J Periodontal Res
January 2025
Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy.
Aim: To test a BiO-Optimizing Site Targeted (BOOST) approach to periodontal regeneration by the adjunctive use of locally delivered doxycycline (DOX) 2 weeks prior to minimally invasive surgery in terms of clinical and radiographic outcomes at 1 year.
Methods: For this randomized clinical trial, stage III/IV periodontitis patients presenting sites with intrabony defects and bleeding on probing (BoP+) after steps 1-2 of periodontal treatment were included. Sites were treated via subgingival instrumentation with or without a BOOST approach by local DOX.
J Mater Chem B
January 2025
Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, P. R. China.
High drug resistance remains a challenge for chemotherapy against hepatocellular carcinoma (HCC). Combining chemotherapeutic agents with microRNA (miRNA), which simultaneously regulates multiple pathways, offers a promising approach to improve therapeutic efficacy against HCC. Although cationic amphiphilic copolymers have been used to co-deliver these agents, their effectiveness is often limited by low co-encapsulation efficiency and inherent cationic toxicity.
View Article and Find Full Text PDFChem Sci
January 2025
School of Chemistry and Materials Science, Jiangsu Normal University Xuzhou 221116 China
Reactive oxygen species (ROS) play a critical role in regulating various physiological processes. To gain a comprehensive understanding of their distinct functions in different physiological events, it is imperative to detect binary ROS simultaneously. However, the development of the sensing method capable of binary ROS detection remains a significant challenge.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China.
Background: Melanoma is an aggressive form of skin cancer, and single-modality treatments often fail to prevent tumor recurrence and metastasis. Combination therapy has emerged as an effective approach to improve treatment outcomes.
Methods: In this study, we developed a multifunctional nanoplatform, MIL@DOX@ICG, utilizing MIL-101-NH(Fe) as a carrier to co-deliver the chemotherapeutic agent doxorubicin (DOX) and the photosensitizer indocyanine green (ICG).
Mater Today Bio
February 2025
Department of Nuclear Medicine, Gansu Provincial Cancer Hospital, Lanzhou, Gansu, 730050, China.
Liposomal nanocarriers are able to carry peptides for efficient and selective delivery of radioactive tracer and drugs into the tumors. Angiopoietin 2 (ANGPT2) is an excellent biomarker for precise diagnosis and therapy of glioma. The present study aimed to design ANGPT2-specific peptides to modify the surface of nanoliposomes containing doxorubicin (Dox) for integrative imaging and targeting therapy of glioma.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!