Prion disease is a fatal neurodegenerative disease caused by the misfolding of prion protein (PrP) encoded by the PRNP gene. While there is currently no cure for the disease, depleting PrP in the brain is an established strategy to prevent or stall templated misfolding of PrP. Here we developed in vivo cytosine and adenine base strategies delivered by adeno-associated viruses to permanently modify the PRNP locus to achieve PrP knockdown in the mouse brain. Systemic injection of dual-adeno-associated virus PHP.eB encoding BE3.9max and single guide RNA installing PRNP R37X resulted in 37% average installation of the desired edit, 50% reduction of PrP in the mouse brain and 52% extension of lifespan in transgenic human PRNP mice inoculated with pathogenic human prion isolates representing the most common sporadic and genetic subtypes of prion disease. We further engineered base editing systems to achieve improved in vivo potency and reduced base editor expression in nontargeting tissues, resulting in 63% average PrP reduction in the mouse brain from a 6.7-fold lower viral dose, with no detected off-target editing of anticipated clinical significance observed in either human cells or mouse tissues. These findings support the potential of in vivo base editing as one-time treatment for prion disease.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41591-024-03466-wDOI Listing

Publication Analysis

Top Keywords

prion disease
16
base editing
12
mouse brain
12
vivo base
8
prion
6
disease
6
prp
6
mouse
5
vivo
4
editing
4

Similar Publications

Creutzfeldt-Jakob Disease (CJD) is an exceedingly rare condition with an incidence of one case per million people worldwide. It is diagnosed with symptoms of rapid neurological decline, positive CSF biomarkers, and diagnostic findings on MRI and EEG. There is no known effective therapy for CJD and prompt diagnosis is required to prepare for the expected disease prognosis and goals of care discussions.

View Article and Find Full Text PDF

Prions are assemblies of misfolded prion protein that cause several fatal and transmissible neurodegenerative diseases, with the most common phenotype in humans being sporadic Creutzfeldt-Jakob disease (sCJD). Aside from variation of the prion protein itself, molecular risk factors are not well understood. Prion and prion-like mechanisms are thought to underpin common neurodegenerative disorders meaning that the elucidation of mechanisms could have broad relevance.

View Article and Find Full Text PDF

Relatedness of White-Tailed Deer from Culling Efforts Within Chronic Wasting Disease Management Zones in Minnesota.

Pathogens

January 2025

U.S. Geological Survey, Pennsylvania Cooperative Fish and Wildlife Research Unit, 403 Forest Resources Building, The Pennsylvania State University, University Park, PA 16802, USA.

In white-tailed deer (), closely related females form social groups, avoiding other social groups. Consequently, females infected with chronic wasting disease (CWD) are more likely to infect social group members. Culling has been used to reduce CWD transmission in high-risk areas; however, its effectiveness in removing related individuals has not been assessed.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is characterised by progressive neurodegeneration with the formation of amyloid beta (Aβ) plaques and neurofibrillary tau tangles in the brain parenchyma. The causes of AD have been attributed to a combination of age-related changes within the brain as well as genetic, environmental and lifestyle factors. However, a recent study by Banerjee et al.

View Article and Find Full Text PDF

Prion diseases, including Creutzfeldt-Jakob disease (CJD), are deadly neurodegenerative disorders characterized by the buildup of abnormal prion proteins in the brain. This accumulation disrupts neuronal functions, leading to the rapid onset of psychiatric symptoms, ataxia, and cognitive decline. The urgency of timely diagnosis for effective treatment necessitates the identification of strongly correlated biomarkers in bodily fluids, which makes our research crucial.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!