The soft-rock roadways in kilometer-deep coal mines are often damaged by large deformation and have to be periodically expanded and repaired, which seriously restricts the safe and efficient production of coal mines. A typical soft-rock roadway in a kilometer-deep coal mine is selected as the engineering, and the main reasons for roadway deformation are analyzed, and the ground stress and mechanical characteristics are obtained. The Flac numerical model, which can accurately reflect the deformation characteristics of surrounding rock in kilometer-deep soft-rock roadway, has been constructed, and the evolution laws of stress field and its damage mechanism have been analyzed with the vertical stress, vertical displacement and plastic zone. The damage range of roadway surrounding rock is elucidated by endoscopic observation, and the synergistic control technology of support and modification is proposed. The on-site engineering application is carried out in Qianyingzi Coal Mine, and the results show that the collaborative control technology of support and modification ensures the safety and stability of deep soft-rock roadway. The results provide important and preliminary technical references for realizing safe and intelligent mining in coal mines.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11733303PMC
http://dx.doi.org/10.1038/s41598-025-86269-4DOI Listing

Publication Analysis

Top Keywords

soft-rock roadway
16
control technology
12
support modification
12
kilometer-deep coal
12
coal mine
12
coal mines
12
collaborative control
8
roadway kilometer-deep
8
surrounding rock
8
technology support
8

Similar Publications

The soft-rock roadways in kilometer-deep coal mines are often damaged by large deformation and have to be periodically expanded and repaired, which seriously restricts the safe and efficient production of coal mines. A typical soft-rock roadway in a kilometer-deep coal mine is selected as the engineering, and the main reasons for roadway deformation are analyzed, and the ground stress and mechanical characteristics are obtained. The Flac numerical model, which can accurately reflect the deformation characteristics of surrounding rock in kilometer-deep soft-rock roadway, has been constructed, and the evolution laws of stress field and its damage mechanism have been analyzed with the vertical stress, vertical displacement and plastic zone.

View Article and Find Full Text PDF

Controlling large deformations in soft rock roadways with integrated anchor shotcrete and grouting techniques.

Sci Rep

November 2024

Key Laboratory of Rock Mechanics and Geohazards of Zhejiang Province, College of Civil Engineering, Shaoxing University, Shaoxing, 312000, China.

Article Synopsis
  • The paper investigates challenges in supporting soft rock roadways in underground coal mining, focusing on the tailgate of longwall panel 2606 at Lvtang Coal Mine in China, where significant roadway deformation was noted despite existing support measures.
  • Analysis revealed that the deformation was primarily due to the low strength and weathering of the surrounding rock, leading to the development of a new synergistic support strategy combining anchoring, shotcreting, and grouting.
  • Field tests of the new support scheme resulted in a 66% reduction in rib deformation, demonstrating its effectiveness in stabilizing the tailgate and providing a reference for similar geological situations in mining.
View Article and Find Full Text PDF

Aiming at the difficult problems of the large deformation in weakly cemented soft rock roadways, the reasons of large deformation are analyzed for roadways in Hongqingliang coal mine. On this basis, the principle of step by step combined support technology based on allowable deformation + limiting shape for weakly cemented soft rock roadway is proposed, and the optimal support parameters of step by step combined technology are determined by FLAC3D. Step by step combined support technology includes the primary support of anchor bolt + anchor cable + initial shotcrete and the secondary support of U-shaped steel shed + filling flexible material behind shed + control of key parts.

View Article and Find Full Text PDF

The TRIZ theory was used to accurately discover the problems to be solved in the design of roadway surrounding rock control technology. This paper tried to solve the complex issue of surrounding rock control in deep roadways from a new perspective. Based on the functional component analysis and causal axis analysis of the problem's primary reason, simultaneously, the surrounding rock control technology was optimized through technical contradiction analysis, physical contradiction analysis, and substance and field model analysis.

View Article and Find Full Text PDF
Article Synopsis
  • Excavating roadways can be tricky because they need strong temporary supports to keep everything stable during the work.
  • Current supports often don't work well, causing gaps that could make the rocks above unstable, especially in soft areas like the Sail Six Mine's A4027 return airway.
  • New hydraulic support systems are being tested, showing they can reduce gaps and keep the rocks from moving too much, which is great for safety in similar roadways.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!