Transient receptor potential channel subfamily M member 3 (TRPM3) is a Ca-permeable cation channel activated by the neurosteroid pregnenolone sulfate (PregS) or heat, serving as a nociceptor in the peripheral sensory system. Recent discoveries of autosomal dominant neurodevelopmental disorders caused by gain-of-function mutations in TRPM3 highlight its role in the central nervous system. Notably, the TRPM3 inhibitor primidone, an anticonvulsant, has proven effective in treating patients with TRPM3-linked neurological disorders and in mouse models of thermal nociception. However, our understanding of neurosteroids, inhibitors and disease mutations on TRPM3 is limited. Here we present cryogenic electron microscopy structures of the mouse TRPM3 in complex with cholesteryl hemisuccinate, primidone and PregS with the synthetic agonist CIM 0216. Our studies identify the binding sites for the neurosteroid, synthetic agonist and inhibitor and offer insights into their effects and disease mutations on TRPM3 gating, aiding future drug development.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41594-024-01463-8DOI Listing

Publication Analysis

Top Keywords

mutations trpm3
12
disease mutations
8
synthetic agonist
8
trpm3
7
molecular basis
4
basis neurosteroid
4
neurosteroid anticonvulsant
4
anticonvulsant regulation
4
regulation trpm3
4
trpm3 transient
4

Similar Publications

Transient receptor potential channel subfamily M member 3 (TRPM3) is a Ca-permeable cation channel activated by the neurosteroid pregnenolone sulfate (PregS) or heat, serving as a nociceptor in the peripheral sensory system. Recent discoveries of autosomal dominant neurodevelopmental disorders caused by gain-of-function mutations in TRPM3 highlight its role in the central nervous system. Notably, the TRPM3 inhibitor primidone, an anticonvulsant, has proven effective in treating patients with TRPM3-linked neurological disorders and in mouse models of thermal nociception.

View Article and Find Full Text PDF

Papillary thyroid cancer (PTC) is one of the fastest-growing cancers worldwide, lacking established causal factors or validated early diagnostics. Human endogenous retroviruses (HERVs), comprising 8% of human genomes, have potential as PTC biomarkers due to their comparably high baseline expression in healthy thyroid tissues, indicating homeostatic roles. However, HERV regions are often overlooked in genome-wide association studies because of their highly repetitive nature, low sequence coverage, and decreased sequencing quality.

View Article and Find Full Text PDF
Article Synopsis
  • The TRPM3 gene is important for sensory perception and ion transport, and mutations here can cause neurological and developmental disorders.
  • A specific mutation, c.2509G>A, results in a change in the protein that likely affects its function, leading to significant delays in motor skills and neurological issues in a pediatric patient.
  • This case illustrates the variability in symptoms related to this mutation and highlights the importance of further research on treatments for TRPM3-related disorders.
View Article and Find Full Text PDF

Neurodevelopmental disorders caused by variants in TRPM3.

Biochim Biophys Acta Mol Cell Res

June 2024

Laboratory of Endometrium, Endometriosis and Reproductive Medicine, Department of Development and Regeneration, KU Leuven, Leuven, Belgium; Laboratory of Ion Channel Research, Department of Molecular Medicine, KU Leuven, Leuven, Belgium. Electronic address:

Developmental and epileptic encephalopathies (DEE) are a broad and varied group of disorders that affect the brain and are characterized by epilepsy and comorbid intellectual disability (ID). These conditions have a broad spectrum of symptoms and can be caused by various underlying factors, including genetic mutations, infections, and other medical conditions. The exact cause of DEE remains largely unknown in the majority of cases.

View Article and Find Full Text PDF

TRPM3 belongs to the melastatin sub-family of transient receptor potential (TRPM) cation channels and has been shown to function as a steroid-activated, heat-sensitive calcium ion (Ca) channel. A missense substitution (p.I65M) in the TRPM3 gene of humans () and mice () has been shown to underlie an inherited form of early-onset, progressive cataract.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!