Genome-scale metabolic models (GSMM) are commonly used to identify gene deletion sets that result in growth coupling and pairing product formation with substrate utilization and can improve strain performance beyond levels typically accessible using traditional strain engineering approaches. However, sustainable feedstocks pose a challenge due to incomplete high-resolution metabolic data for non-canonical carbon sources required to curate GSMM and identify implementable designs. Here we address a four-gene deletion design in the Pseudomonas putida KT2440 strain for the lignin-derived non-sugar carbon source, p-coumarate (p-CA), that proved challenging to implement. We examine the performance of the fully implemented design for p-coumarate to glutamine, a useful biomanufacturing intermediate. In this study glutamine is then converted to indigoidine, an alternative sustainable pigment and a model heterologous product that is commonly used to colorimetrically quantify glutamine concentration. Through proteomics, promoter-variation, and growth characterization of a fully implemented gene deletion design, we provide evidence that aromatic catabolism in the completed design is rate-limited by fumarase hydratase (FUM) enzyme activity in the citrate cycle and requires careful optimization of another fumarate hydratase protein (PP_0897) expression to achieve growth and production. A double sensitivity analysis also confirmed a strict requirement for fumarate hydratase activity in the strain where all genes in the growth coupling design have been implemented. Metabolic cross-feeding experiments were used to examine the impact of complete removal of the fumarase hydratase reaction and revealed an unanticipated nutrient requirement, suggesting additional functions for this enzyme. While a complete implementation of the design was achieved, this study highlights the challenge of completely inactivating metabolic reactions encoded by under-characterized proteins, especially in the context of multi-gene edits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41540-024-00480-z | DOI Listing |
NPJ Syst Biol Appl
January 2025
The Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA.
Genome-scale metabolic models (GSMM) are commonly used to identify gene deletion sets that result in growth coupling and pairing product formation with substrate utilization and can improve strain performance beyond levels typically accessible using traditional strain engineering approaches. However, sustainable feedstocks pose a challenge due to incomplete high-resolution metabolic data for non-canonical carbon sources required to curate GSMM and identify implementable designs. Here we address a four-gene deletion design in the Pseudomonas putida KT2440 strain for the lignin-derived non-sugar carbon source, p-coumarate (p-CA), that proved challenging to implement.
View Article and Find Full Text PDFFEMS Microbiol Lett
January 2025
Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12/I, 8010, Graz, Austria.
Terminal olefins are important platform chemicals, drop-in compatible hydrocarbons and also play an important role as biocontrol agents of plant pathogens. Currently, 1-alkenes are derived from petroleum, although microbial biosynthetic routes are known. Jeotgalicoccus sp.
View Article and Find Full Text PDFMicrob Biotechnol
January 2025
Department of Chemistry, and Manchester Institute of Biotechnology (MIB), The University of Manchester, Manchester, UK.
Harnessing in situ microbial communities to clean-up polluted natural environments is a potentially efficient means of bioremediation, but often the necessary genes to breakdown pollutants are missing. Genetic bioaugmentation, whereby the required genes are delivered to resident bacteria via horizontal gene transfer, offers a promising solution to this problem. Here, we engineered a conjugative plasmid previously isolated from soil, pQBR57, to carry a synthetic set of genes allowing bacteria to consume terephthalate, a chemical component of plastics commonly released during their manufacture and breakdown.
View Article and Find Full Text PDFBioresour Technol
January 2025
Department of Chemical and Biomolecular Engineering, National University of Singapore, S117585, Singapore; Energy and Environmental Sustainability Solutions for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), S138602, Singapore. Electronic address:
Pseudomonas putida degraded 35 % of compounds in alkali-pretreated lignin liquor under nitrogen-replete conditions but with low polyhydroxyalkanoates (PHA) production, while limiting nitrogen supplement improved PHA content (PHA/dry cell weight) to 43 % at the expense of decreased lignin degradation of 22 %. Increase of initial cell biomass (0.1-1.
View Article and Find Full Text PDFMicrobiol Res
January 2025
State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China. Electronic address:
The widespread antimicrobial resistance (AMR) problem poses a serious health threat, leaving few drug choices, including tigecycline, to treat multidrug resistance pathogens. However, a plasmid-borne tigecycline resistance gene cluster, tmexCD1-toprJ1, emerged and conferred tigecycline resistance. In this study, we identified two novel subtypes, tmexCD2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!