Emergence of the North Pacific heat storage pattern delayed by decadal wind-driven redistribution.

Nat Commun

Key Laboratory of Ocean Observation and Forecasting and Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.

Published: January 2025

Storage of anthropogenic heat in the oceans is spatially inhomogeneous, impacting regional climates and human societies. Climate models project enhanced heat storage in the mid-latitude North Pacific (MNP) and much weaker storage in the tropical Pacific. However, the observed heat storage during the past half-century shows a more complex pattern, with limited warming in the MNP and enhanced warming in the northwest tropical Pacific. Here, based on observational datasets, ocean model experiments, and climate models, we show that the emergence of human-induced heat storage is likely postponed in the North Pacific by natural variability until the late-21 century. Specifically, phase shifts of the Pacific Decadal Oscillation have vitally contributed to trends in the North Pacific winds during recent decades. Changes in surface winds drove meridional heat redistribution via Rossby wave dynamics, leading to regional warming and cooling structures and a more complex historical heat storage than models predict. Despite this, enhanced anthropogenic warming has already been emerging in marginal seas along the North Pacific basin rim, for which we shall prepare for the pressing consequences such as increasing marine heatwaves.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11733174PMC
http://dx.doi.org/10.1038/s41467-025-56005-7DOI Listing

Publication Analysis

Top Keywords

north pacific
20
heat storage
20
pacific
8
climate models
8
tropical pacific
8
heat
7
storage
7
emergence north
4
pacific heat
4
storage pattern
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!