Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejim.2024.12.019 | DOI Listing |
Sci Rep
January 2025
CIBER Cardiovascular, Madrid, Spain.
Soluble ST2 (sST2) is released in response to vascular congestion, inflammation, and pro-fibrotic stimuli. In heart failure (HF), elevated levels of sST2 are associated with a higher risk of adverse clinical outcomes. Emerging evidence suggests that carbohydrate antigen 125 (CA125) may act as a ligand that modulates the inflammatory response.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Neurosurgery, Kepler University Hospital and Johannes Kepler University Linz, Wagner-Jauregg Weg 15, 4020 Linz and Altenbergerstrasse 69, Linz, 4040, Austria.
Accurate rupture risk assessment is essential for optimizing treatment decisions in patients with cerebral aneurysms. While computational fluid dynamics (CFD) has provided critical insights into aneurysmal hemodynamics, most analyses focus on blood flow patterns, neglecting the biomechanical properties of the aneurysm wall. To address this limitation, we applied Fluid-Structure Interaction (FSI) analysis, an integrative approach that simulates the dynamic interplay between hemodynamics and wall mechanics, offering a more comprehensive risk assessment.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Department of Surgery, Clinical Advancement Department, Hamad Medical Corporation, Qatar; College of Health and Medical Sciences, Qatar University, Qatar. Electronic address:
Point of departure (POD) is a concept used in risk assessment to calculate the reference dose of exposure that is likely to have no appreciable risk on health. POD can be directly utilized from no observed adverse effect levels (NOAEL) which is the dose or exposure level at which there is little or no risk of adverse effects. However, NOAEL values are unavailable for most of the chemicals due to inconsistent animal toxicity data.
View Article and Find Full Text PDFEur J Intern Med
January 2025
Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China. Electronic address:
J Phys Chem A
January 2025
Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay UMR 8214, 91405 Orsay, France.
This study deals with the understanding of hydrogen atom scattering from graphene, a process critical for exploring C-H bond formation and energy transfer during atom surface collision. In our previous work [Shi, L.; 2023, 159, 194102], starting from a cell with 24 carbon atoms treated periodically, we have achieved quantum dynamics (QD) simulations with a reduced-dimensional model (15D) and a simulation in full dimensionality (75D).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!