TP53 is normally a tumor suppressor. However, it is mutated in at least 50% of human cancers. Usually, we assume that mutation of the TP53 is associated with loss of sensitivity to various drugs as in most cases wild type (WT) TP53 activity is lost. This type of mutations is often dominant-negative (DN) mutations as they can interfere with the normal functions of WT-TP53 which acts as a tetramer. These mutations can result in altered gene expression patterns. There are some TP53 mutations which may lack some of the normal functions of TP53 but have additional functions; these types of mutations are called gain of function (GOF) mutations. There is another class of TP53 mutations, they are TP53 null mutations as the cells have deleted the TP53 gene (TP53-null). Although TP53 mutations were initially considered undruggable, other approaches have been developed to increase TP53 activity. One approach was to develop mouse double minute 2 homolog (MDM2) inhibitors as MDM2 suppresses TP53 activity. In addition, there have been mutant TP53 reactivators created, which will at least partially restore some of the critical growth suppressing effects of TP53. Some of these mutant TP53 reactivators have shown promise in clinical trial in certain types of cancer patients, especially myelodysplastic syndrome (MDS). In this review, we summarize the development of novel TP53 reactivators and MDM2 inhibitors. Both approaches are aimed at increasing or restoring TP53 activity. Attempts to increase TP53 activity in various TP53 mutant tumors could increase therapy of multiple deadly diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbior.2024.101073 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!