Aims: Hyperglycaemic conditions increase cardiac stress, a common phenomenon associated with inflammation, aging, and metabolic imbalance. Sodium-glucose cotransporter 2 inhibitors, a class of anti-diabetic drugs, showed to improve cardiovascular functions although their mechanism of action has not yet been fully established. This study investigated the effects of empagliflozin on cardiomyocytes following high glucose exposure, specifically focusing on inflammatory and metabolic responses.
Methods And Results: A three-part strategy was formulated: (i) a meta-analysis of selected randomized clinical trials was carried out to assess the anti-inflammatory effects of empagliflozin in diabetic patients; (ii) the impact of empagliflozin on human cardiomyocyte AC16 cells exposed to normal (5 mM) and high (33 mM) glucose concentrations for 2 and 7 days was explored by evaluating gene expression and protein levels of pivotal markers associated with cardiac inflammation, stress, endoplasmic reticulum damage, and calcium modulation; (iii) in silico data from bioinformatic analyses were exploited to construct an interaction map delineating the potential mechanism of action of empagliflozin on cardiac tissue. Empagliflozin reversed high-glucose mediated alterations at the transcriptional level, decreasing inflammatory, metabolic, and aging signatures. Specifically, in vitro experiments on human cardiomyocytes, meta-analyses of clinical data on inflammatory biomarkers from diabetic peripheral blood samples, and sequencing of pathological human heart tissues, all support that empagliflozin exerts anti-inflammatory effects both systemically and directly in cardiac tissue, on cardiomyocytes.
Conclusion: Our study provides insights based on robust mechanistic data for optimizing heart failure management and highlights the intricate interplay between diabetes, inflammation, aging, and cardiovascular health.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ejhf.3566 | DOI Listing |
NPJ Regen Med
January 2025
Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan.
Gut microbiota affect transplantation outcomes; however, the influence of immunosuppression and cell therapy on the gut microbiota in cardiovascular care remains unexplored. We investigated gut microbiota dynamics in a nonhuman primate (NHP) cardiac ischemia/reperfusion model while under immunosuppression and receiving cell therapy with human induced pluripotent stem cell (hiPSC)-derived endothelial cells (EC) and cardiomyocytes (CM). Both immunosuppression and EC/CM co-treatment increased gut microbiota alpha diversity.
View Article and Find Full Text PDFEur J Heart Fail
January 2025
Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.
Aims: Hyperglycaemic conditions increase cardiac stress, a common phenomenon associated with inflammation, aging, and metabolic imbalance. Sodium-glucose cotransporter 2 inhibitors, a class of anti-diabetic drugs, showed to improve cardiovascular functions although their mechanism of action has not yet been fully established. This study investigated the effects of empagliflozin on cardiomyocytes following high glucose exposure, specifically focusing on inflammatory and metabolic responses.
View Article and Find Full Text PDFMedicine (Baltimore)
November 2024
Yantai Yuhuangding Hospital, Shandong, China.
Background: The neutrophil-mediated generation of neutrophil extracellular traps (NETs) results in an augmented inflammatory response and cellular tissue injury during acute myocardial infarction (AMI). Through the analysis of public database information, we discovered and confirmed putative critical genes involved in NETs-mediated AMI.
Methods: The AMI dataset GSE66360 and the single-cell dataset GSE163465 were downloaded from the Gene Expression Omnibus database.
Nat Commun
January 2025
Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, USA.
Intracellular electrophysiology is essential in neuroscience, cardiology, and pharmacology for studying cells' electrical properties. Traditional methods like patch-clamp are precise but low-throughput and invasive. Nanoelectrode Arrays (NEAs) offer a promising alternative by enabling simultaneous intracellular and extracellular action potential (iAP and eAP) recordings with high throughput.
View Article and Find Full Text PDFBiomaterials
January 2025
Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA. Electronic address:
Cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CMs) possess tremendous advantage for cardiac regeneration. However, cell survival is challenging upon cell transplantation. Since microgravity can profoundly affect cellular properties, we investigated the effect of spaceflight on hiPSC-CMs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!