Aging of the human brain involves intricate biological processes, resulting in complex changes in structure and function. While the effects of aging on gray matter (GM) connectivity are extensively studied, white matter (WM) functional changes have received comparatively less attention. This study examines age-related WM functional dynamics using resting-state fMRI across the adult lifespan. We identified GM and WM functional networks (FNs) using k-means clustering. Static and dynamic analyses of WM functional network connectivity (FNC) were performed to explore age effects on WM-FNs and recurrent patterns of dynamic FNC. We identified 9 WM and 12 GM FNs. Age-related effects on WM FNC strength and WM-GM FNC dynamics included linear positive and U-shaped age trajectories in static FNC strength, and linear negative and inverted U-shaped trajectories in FNC temporal variability. Three distinct brain states with significant age-related differences were identified and validated. These findings were largely replicated in the validation analysis. High integration and low temporal variability in WM-GM FNC may indicate reduced adaptability of the network system in older adults, offering insights into brain aging processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pnpbp.2025.111252 | DOI Listing |
Sci Rep
January 2025
Department of Physics, Lehigh University, Bethlehem, Pennsylvania, 18015, USA.
Driven quantum materials often feature emergent topology, otherwise absent in static crystals. Dynamic bulk-boundary correspondence, encoded by nondissipative gapless modes residing near the Floquet zone center and/or boundaries, is its most prominent example. Here we show that topologically robust gapless dispersive modes appear along the grain boundaries, embedded in the interior of Floquet topological crystals, when the Floquet-Bloch band inversion occurring at a finite momentum ( ) and the Burgers vector ( ) of the constituting array of dislocations satisfy (modulo ).
View Article and Find Full Text PDFProg Neuropsychopharmacol Biol Psychiatry
January 2025
MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha 410006, PR China; Key Laboratory of Applied Statistics and Data Science, Hunan Normal University, College of Hunan Province, Changsha 410006, PR China. Electronic address:
Aging of the human brain involves intricate biological processes, resulting in complex changes in structure and function. While the effects of aging on gray matter (GM) connectivity are extensively studied, white matter (WM) functional changes have received comparatively less attention. This study examines age-related WM functional dynamics using resting-state fMRI across the adult lifespan.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Chemistry, School of Science and Key Laboratory for Quantum Materials of Zhejiang Province, Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China.
In our previous studies of metal nanoparticle growth, we have come to realize that the dynamic interplay between ligand passivation and metal deposition, as opposed to static facet control, is responsible for focused growth at a few active sites. In this work, we show that the same underlying principle could be applied to a very different system and explain the abnormal growth modes of liquid nanoparticles. In such a liquid active surface growth (LASG), the interplay between droplet expansion and simultaneous silica shell encapsulation gives rise to an active site of growth, which eventually becomes the long necks of nanobottles.
View Article and Find Full Text PDFPLoS Comput Biol
January 2025
Department of Mathematics and Statistics, Middlebury College, Middlebury, Vermont, United States of America.
Chronic pain is a wide-spread condition that is debilitating and expensive to manage, costing the United States alone around $600 billion in 2010. In a common symptom of chronic pain called allodynia, non-painful stimuli produce painful responses with highly variable presentations across individuals. While the specific mechanisms remain unclear, allodynia is hypothesized to be caused by the dysregulation of excitatory-inhibitory (E-I) balance in pain-processing neural circuitry in the dorsal horn of the spinal cord.
View Article and Find Full Text PDFAnesth Analg
September 2024
From the Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Phoenix, Arizona.
Background: During orthotopic liver transplantation, allograft reperfusion is a dynamic point in the operation and often requires vasoactive medications and blood transfusions. Normothermic machine perfusion (NMP) of liver allografts has emerged to increase the number of transplantable organs and may have utility during donation after circulatory death (DCD) liver transplantation in reducing transfusion burden and vasoactive medication requirements.
Methods: This is a single-center retrospective study involving 226 DCD liver transplant recipients who received an allograft transported with NMP (DCD-NMP group) or with static cold storage (DCD-SCS group).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!