The catalytic performance of Candida antarctica lipase B (CALB) immobilized on silica-coated magnetic nanoparticles was evaluated for biodiesel production via methanolysis of rapeseed oil. Two different covalent immobilization approaches were compared to assess the effect of immobilization protocols on lipase efficiency. The first approach involved immobilization of CALB on amine-functionalized magnetic nanoparticles (MNPs), which targeted the Lys-rich regions of the enzyme. The second used epoxy-functionalized MNPs, enabling broader nucleophilic groups on the enzyme surface to participate in the coupling reaction. Immobilization of 20 mg of CALB on 1 g of each support resulted in 82 % and 86 % protein loading on the amine- and epoxy-functionalized MNPs, respectively, after 24 h of incubation. Response surface methodology (RSM) was applied to optimize biodiesel production by analyzing the effects of parameters such as reaction temperature, time, t-butanol concentration, biocatalyst loading, and molecular sieve quantity on the yield of fatty acid methyl esters (FAME). Out of 45 designed experiments, the maximum FAME yields were 92 % and 84 % for the epoxy- and amine-functionalized MNPs, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2025.139814 | DOI Listing |
Microb Cell Fact
January 2025
Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
Extensive anthropogenic activity has led to the accumulation of organic and inorganic contaminants in diverse ecosystems, which presents significant challenges for the environment and its inhabitants. Utilizing microalgae as a bioremediation tool can present a potential solution to these challenges. Microalgae have gained significant attention as a promising biotechnological solution for detoxifying environmental pollutants.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemistry, University of Zanjan, Zanjan, Iran. Electronic address:
The catalytic performance of Candida antarctica lipase B (CALB) immobilized on silica-coated magnetic nanoparticles was evaluated for biodiesel production via methanolysis of rapeseed oil. Two different covalent immobilization approaches were compared to assess the effect of immobilization protocols on lipase efficiency. The first approach involved immobilization of CALB on amine-functionalized magnetic nanoparticles (MNPs), which targeted the Lys-rich regions of the enzyme.
View Article and Find Full Text PDFBioresour Technol
January 2025
Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China; Department of Chemical Engineering, Tsinghua University, Beijing, China; Key Lab for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China; School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang, China. Electronic address:
Pinene is a plant volatile monoterpenoid which is used in the fragrance, pesticide, and biofuel industries. Although α-pinene has been synthesized in microbial cell factories, the low synthesis efficiency has thus far limited its production. In this study, the cell growth and α-pinene production of the engineered yeast were decoupled by a dynamic regulation strategy, resulting in a 101.
View Article and Find Full Text PDFBiotechnol Notes
December 2024
Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia.
This study investigates the potential of phototrophic microalgae, specifically Chlorella protothecoides, for biological wastewater treatment, with a focus on the effects of air temperature and CO concentration on nutrient removal from tertiary municipal wastewater. Utilizing both the Monod and Arrhenius kinetic models, the research examines how temperature and nutrient availability influence microalgal growth and nutrient removal. The study finds that optimal biomass productivity occurs at 25 °C, with growth slowing at higher temperatures (30 °C, 40 °C, and 45 °C).
View Article and Find Full Text PDFToxicol Rep
June 2025
Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo 315048, China.
seeds are known for their high oil content, and the oil extracted from these seeds has been traditionally utilized in biodiesel production. The presence of toxic compounds, specifically phorbol esters (PEs), in seed oil (JCSO) has blocked its use for human consumption. This article presents a thorough literature review that summarizes the latest research on the toxicological effects, including acute toxicity, genotoxicity, carcinogenicity, and chronic toxicity associated with phorbol esters (JCPEs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!